Glycosides are ubiquitous plant secondary metabolites consisting of a non-sugar component called an aglycone, attached to one or more sugars. One of the most interesting aglycones in grapes and wine is methyl salicylate (MeSA), an organic ester naturally produced by many plants, particularly wintergreens. To date, nine different MeSA glycosides from plants have been reported, mainly spread over the genera Gaultheria, Camellia, Polygala, Filipendula, and Passiflora. From a sensorial point of view, MeSA has a balsamic-sweet odor, known as Wintergreen. MeSA was found in Vitis riparia grapes, in Vitis vinifera sp. and in the Frontenac interspecific hybrid. We found that the MeSA glycosides content in Verdicchio wines and in some genetically related varieties (Trebbiano di Soave and Trebbiano di Lugana) was very high. In order to understand which glycosides were present in wine, the methanolic extract of Verdicchio wine was injected into a UPLC-Q-TOF-HDMS and compared to the extracts of different plants rich in such glycosides. Using pure standards, we confirmed the existence of two glycosides in wine: MeSA 2-O-β-d-glucoside and MeSA 2-O-β-d-xylopyranosyl (1-6) β-d-glucopyranoside (gaultherin). For the first time, we also tentatively identified other diglycosides in wine: MeSA 2-O-α-l-arabinopyranosyl (1-6)-β-d-glucopyranoside (violutoside) and MeSA 2-O-β-d-apiofuranosyl (1-6)-β-d-glucopyranoside (canthoside A), MeSA 2-O-β-d-glucopyranosyl (1-6)-O-β-d-glucopyranoside (gentiobioside) and MeSA 2-O-α-l-rhamnopyranosyl (1-6)-β-d-glucopyranoside (rutinoside). Some of these glycosides have been isolated from Gaultheria procumbens leaves by preparative liquid chromatography and structurally annotated by 1H- and 13C-NMR analysis. Two of the peaks isolated from Gaultheria procumbens leaves, namely MeSA sambubioside and MeSA sophoroside, were herein observed for the first time. Six MeSA glycosides were quantified in 64 Italian white wines, highlighting the peculiar content and pattern in Verdicchio wines and related cultivars. The total concentration in bound and free MeSA in Verdicchio wines varied in the range of 456–9796 μg/L and 5.5–143 μg/L, respectively, while in the other wines the bound and free MeSA was below 363 μg/L and 12 μg/L, respectively. As this compound’s olfactory threshold is between 50 and 100 μg/L, our data support the hypothesis that methyl salicylate can contribute to the balsamic scent, especially in old Verdicchio wines

Carlin, S.; Masuero, D.; Guella, G.; Vrhovsek, U.; Mattivi, F. (2019). Methyl salicylate glycosides in some Italian varietal wines. MOLECULES, 24 (18): 3260. doi: 10.3390/molecules24183260 handle: http://hdl.handle.net/10449/57630

Methyl salicylate glycosides in some Italian varietal wines

Carlin,S.
Primo
;
Masuero, D.;Vrhovsek, U.;Mattivi, F.
Ultimo
2019-01-01

Abstract

Glycosides are ubiquitous plant secondary metabolites consisting of a non-sugar component called an aglycone, attached to one or more sugars. One of the most interesting aglycones in grapes and wine is methyl salicylate (MeSA), an organic ester naturally produced by many plants, particularly wintergreens. To date, nine different MeSA glycosides from plants have been reported, mainly spread over the genera Gaultheria, Camellia, Polygala, Filipendula, and Passiflora. From a sensorial point of view, MeSA has a balsamic-sweet odor, known as Wintergreen. MeSA was found in Vitis riparia grapes, in Vitis vinifera sp. and in the Frontenac interspecific hybrid. We found that the MeSA glycosides content in Verdicchio wines and in some genetically related varieties (Trebbiano di Soave and Trebbiano di Lugana) was very high. In order to understand which glycosides were present in wine, the methanolic extract of Verdicchio wine was injected into a UPLC-Q-TOF-HDMS and compared to the extracts of different plants rich in such glycosides. Using pure standards, we confirmed the existence of two glycosides in wine: MeSA 2-O-β-d-glucoside and MeSA 2-O-β-d-xylopyranosyl (1-6) β-d-glucopyranoside (gaultherin). For the first time, we also tentatively identified other diglycosides in wine: MeSA 2-O-α-l-arabinopyranosyl (1-6)-β-d-glucopyranoside (violutoside) and MeSA 2-O-β-d-apiofuranosyl (1-6)-β-d-glucopyranoside (canthoside A), MeSA 2-O-β-d-glucopyranosyl (1-6)-O-β-d-glucopyranoside (gentiobioside) and MeSA 2-O-α-l-rhamnopyranosyl (1-6)-β-d-glucopyranoside (rutinoside). Some of these glycosides have been isolated from Gaultheria procumbens leaves by preparative liquid chromatography and structurally annotated by 1H- and 13C-NMR analysis. Two of the peaks isolated from Gaultheria procumbens leaves, namely MeSA sambubioside and MeSA sophoroside, were herein observed for the first time. Six MeSA glycosides were quantified in 64 Italian white wines, highlighting the peculiar content and pattern in Verdicchio wines and related cultivars. The total concentration in bound and free MeSA in Verdicchio wines varied in the range of 456–9796 μg/L and 5.5–143 μg/L, respectively, while in the other wines the bound and free MeSA was below 363 μg/L and 12 μg/L, respectively. As this compound’s olfactory threshold is between 50 and 100 μg/L, our data support the hypothesis that methyl salicylate can contribute to the balsamic scent, especially in old Verdicchio wines
Methyl salicylate
Glycosides
Verdicchio wine
Gaultherin
Violutoside
Methyl salicylate glucoside
Methyl salicylate canthoside A
Methyl salicylate gentiobioside
Methyl salicylate rutinoside
Methyl salicylate sambubioside
Settore CHIM/10 - CHIMICA DEGLI ALIMENTI
2019
Carlin, S.; Masuero, D.; Guella, G.; Vrhovsek, U.; Mattivi, F. (2019). Methyl salicylate glycosides in some Italian varietal wines. MOLECULES, 24 (18): 3260. doi: 10.3390/molecules24183260 handle: http://hdl.handle.net/10449/57630
File in questo prodotto:
File Dimensione Formato  
2019 M Carlin et al.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 4.49 MB
Formato Adobe PDF
4.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/57630
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact