Six strains of non-starter lactic acid bacteria (NSLAB) were used to extend the shelf-life of the fresh cheese Tosèla manufactured with pasteurised cows’ milk. The acidification kinetics of three Lactobacillus paracasei, one Lactobacillus rhamnosus and two Streptococcus macedonicus were studied in synthetic milk medium. Lb. paracasei NdP78 and NdP88 and S. macedonicus NdP1 and PB14-1 showed an interesting acidifying capacity and were further characterised for growth in UHT milk and production of antimicrobial compounds. Lb. paracasei NdP78 and S. macedonicus NdP1 grew more than 2 log cycles in 6 h. Lb. paracasei NdP78 was also found to produce a bacteriocin-like inhibitory substance (BLIS) active against Listeria monocytogenes. The four NSLAB strains (singly or in combination) were used to produce experimental pilot-scale cheeses which were compared by a panel. The cheese manufactured with the mixed culture Lb. paracasei NdP78 - S. macedonicus NdP1 was the most appreciated for its sensory properties. The cheeses produced at factory-scale showed higher concentrations of lactobacilli (7.90 log CFU/g) and streptococci (6.10 log CFU/g), but a lower development of coliforms (3.10 log CFU/g) and staphylococci (2.78 log CFU/g) than control cheese (4.86, 4.89, 4.93 and 5.00 log CFU/g of lactobacilli, streptococci, coliforms and staphylococci, respectively) processed without NSLAB addition. The food pathogens Salmonella spp. and Listeria monocytogenes were never detected. The dominance of the species inoculated was demonstrated by denaturing gradient gel electrophoresis (DGGE), whereas strain recognition was evaluated by randomly amplified polymorphic DNA (RAPD)-PCR. From the results obtained, Lb. paracasei NdP78 and S. macedonicus NdP1 were able to persist during the storage of Tosèla cheese and their combination influenced positively the sensory characteristics and shelf-life of the final product.

Settanni, L.; Franciosi, E.; Cavazza, A.; Cocconcelli, P.S.; Poznanski, E. (2011). Extension of Tosela cheese shelf-life using non-starter lactic acid bacteria. FOOD MICROBIOLOGY, 28 (5): 883-890. doi: 10.1016/j.fm.2010.12.003 handle: http://hdl.handle.net/10449/20006

Extension of Tosela cheese shelf-life using non-starter lactic acid bacteria

Settanni, Luca;Franciosi, Elena;Cavazza, Agostino;Poznanski, Elisa
2011-01-01

Abstract

Six strains of non-starter lactic acid bacteria (NSLAB) were used to extend the shelf-life of the fresh cheese Tosèla manufactured with pasteurised cows’ milk. The acidification kinetics of three Lactobacillus paracasei, one Lactobacillus rhamnosus and two Streptococcus macedonicus were studied in synthetic milk medium. Lb. paracasei NdP78 and NdP88 and S. macedonicus NdP1 and PB14-1 showed an interesting acidifying capacity and were further characterised for growth in UHT milk and production of antimicrobial compounds. Lb. paracasei NdP78 and S. macedonicus NdP1 grew more than 2 log cycles in 6 h. Lb. paracasei NdP78 was also found to produce a bacteriocin-like inhibitory substance (BLIS) active against Listeria monocytogenes. The four NSLAB strains (singly or in combination) were used to produce experimental pilot-scale cheeses which were compared by a panel. The cheese manufactured with the mixed culture Lb. paracasei NdP78 - S. macedonicus NdP1 was the most appreciated for its sensory properties. The cheeses produced at factory-scale showed higher concentrations of lactobacilli (7.90 log CFU/g) and streptococci (6.10 log CFU/g), but a lower development of coliforms (3.10 log CFU/g) and staphylococci (2.78 log CFU/g) than control cheese (4.86, 4.89, 4.93 and 5.00 log CFU/g of lactobacilli, streptococci, coliforms and staphylococci, respectively) processed without NSLAB addition. The food pathogens Salmonella spp. and Listeria monocytogenes were never detected. The dominance of the species inoculated was demonstrated by denaturing gradient gel electrophoresis (DGGE), whereas strain recognition was evaluated by randomly amplified polymorphic DNA (RAPD)-PCR. From the results obtained, Lb. paracasei NdP78 and S. macedonicus NdP1 were able to persist during the storage of Tosèla cheese and their combination influenced positively the sensory characteristics and shelf-life of the final product.
NSLAB
Fresh cheese
Bacteriocins
Shelf-life
Formaggi freschi
NSLAB
Settore CHIM/10 - CHIMICA DEGLI ALIMENTI
2011
Settanni, L.; Franciosi, E.; Cavazza, A.; Cocconcelli, P.S.; Poznanski, E. (2011). Extension of Tosela cheese shelf-life using non-starter lactic acid bacteria. FOOD MICROBIOLOGY, 28 (5): 883-890. doi: 10.1016/j.fm.2010.12.003 handle: http://hdl.handle.net/10449/20006
File in questo prodotto:
File Dimensione Formato  
Extension of Tosela cheese shelf-life using non-starter lactic acid bacteria.pdf

solo utenti autorizzati

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 627.85 kB
Formato Adobe PDF
627.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/20006
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact