Garlic (Allium sativum L.) is not only appreciated for its flavour and taste, but it is also recognized for various health properties. The European Commission, through the attribution of the Protected Designation of Origin (PDO) certification mark, has officially recognized some specific varieties of garlic. To protect not only the commercial value but also the reputation of this appreciated product, effective tools are therefore required. For the first time, a new compound specific isotope analysis method based on carbon stable isotopic ratio measurement of the three major volatile garlic compounds allyl alcohol (AA), diallyl disulphide (DD) and diallyl trisulphide (DT) through head-space solid phase microextraction (HS-SPME) followed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was developed. A within-day standard deviation (Srwithin-day) of 0.3 ‰, 0.4 ‰ and 0.2 ‰ for δ(13C) and a between-day standard deviation (Srbetween-day) of 0.8 ‰, 1.0 ‰ and 0.6 ‰ of AA, DT and DD was estimated. For the first time, the ranges of isotopic variability for the three volatile compounds of red garlic from two neighbouring Italian regions (Abruzzo and Lazio) were defined analysing 30 samples. The same dataset was also considered in analysing the percentage composition of the previously mentioned three volatile compounds through HS-SPME followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The two analytical approaches were combined in this explorative study, aiming to provide potential parameters to discriminate garlic samples based on their geographical origin
Pianezze, S.; Paolini, M.; D'Archivio, A.A.; Perini, M. (2024-05-15). Gas chromatography-stable isotope ratio mass spectrometry prior solid phase microextraction and gas chromatography-tandem mass spectrometry: development and optimization of analytical methods to analyse garlic (Allium sativum L.) volatile fraction. HELIYON, 10 (9): e30248. doi: 10.1016/j.heliyon.2024.e30248 handle: https://hdl.handle.net/10449/87736
Gas chromatography-stable isotope ratio mass spectrometry prior solid phase microextraction and gas chromatography-tandem mass spectrometry: development and optimization of analytical methods to analyse garlic (Allium sativum L.) volatile fraction
Pianezze, S.Primo
;Paolini, M.;Perini, M.
Ultimo
2024-05-15
Abstract
Garlic (Allium sativum L.) is not only appreciated for its flavour and taste, but it is also recognized for various health properties. The European Commission, through the attribution of the Protected Designation of Origin (PDO) certification mark, has officially recognized some specific varieties of garlic. To protect not only the commercial value but also the reputation of this appreciated product, effective tools are therefore required. For the first time, a new compound specific isotope analysis method based on carbon stable isotopic ratio measurement of the three major volatile garlic compounds allyl alcohol (AA), diallyl disulphide (DD) and diallyl trisulphide (DT) through head-space solid phase microextraction (HS-SPME) followed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was developed. A within-day standard deviation (Srwithin-day) of 0.3 ‰, 0.4 ‰ and 0.2 ‰ for δ(13C) and a between-day standard deviation (Srbetween-day) of 0.8 ‰, 1.0 ‰ and 0.6 ‰ of AA, DT and DD was estimated. For the first time, the ranges of isotopic variability for the three volatile compounds of red garlic from two neighbouring Italian regions (Abruzzo and Lazio) were defined analysing 30 samples. The same dataset was also considered in analysing the percentage composition of the previously mentioned three volatile compounds through HS-SPME followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The two analytical approaches were combined in this explorative study, aiming to provide potential parameters to discriminate garlic samples based on their geographical originFile | Dimensione | Formato | |
---|---|---|---|
2024 H Pianezze.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.