To differentiate white wines from Croatian indigenous varieties, volatile aroma compounds were isolated by headspace solid-phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOF-MS) and conventional one-dimensional GC-MS. The data obtained were subjected to uni- and multivariate statistical analysis. The extra separation ability of the GC×GC second dimension provided additional in-depth volatile profile information, with more than 1000 compounds detected, while 350 were identified or tentatively identified in total by both techniques, which allowed highly efficient differentiation. A hundred and sixty one compounds in total were significantly different across monovarietal wines. Monoterpenic compounds, especially α-terpineol, followed by limonene and linalool, emerged as the most powerful differentiators, although particular compounds from other chemical classes were also shown to have notable discriminating ability. In general, Škrlet wine was the most abundant in monoterpenes, Malvazija istarska was dominant in terms of fermentation esters concentration, Pošip contained the highest levels of particular C13-norisoprenoids, benzenoids, acetates, and sulfur containing compounds, Kraljevina was characterized by the highest concentration of a tentatively identified terpene γ-dehydro-ar-himachalene, while Maraština wine did not have specific unambiguous markers. The presented approach could be practically applied to improve defining, understanding, managing, and marketing varietal typicity of monovarietal wines
Lukić, I.; Carlin, S.; Vrhovsek, U. (2020). Comprehensive 2D gas chromatography with TOF-MS detection confirms the matchless discriminatory power of monoterpenes and provides in-depth volatile profile information for highly efficient white wine varietal differentiation. FOODS, 9 (12): 1787. doi: 10.3390/foods9121787 handle: http://hdl.handle.net/10449/65708
Comprehensive 2D gas chromatography with TOF-MS detection confirms the matchless discriminatory power of monoterpenes and provides in-depth volatile profile information for highly efficient white wine varietal differentiation
Carlin, S.;Vrhovsek, U.Ultimo
2020-01-01
Abstract
To differentiate white wines from Croatian indigenous varieties, volatile aroma compounds were isolated by headspace solid-phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOF-MS) and conventional one-dimensional GC-MS. The data obtained were subjected to uni- and multivariate statistical analysis. The extra separation ability of the GC×GC second dimension provided additional in-depth volatile profile information, with more than 1000 compounds detected, while 350 were identified or tentatively identified in total by both techniques, which allowed highly efficient differentiation. A hundred and sixty one compounds in total were significantly different across monovarietal wines. Monoterpenic compounds, especially α-terpineol, followed by limonene and linalool, emerged as the most powerful differentiators, although particular compounds from other chemical classes were also shown to have notable discriminating ability. In general, Škrlet wine was the most abundant in monoterpenes, Malvazija istarska was dominant in terms of fermentation esters concentration, Pošip contained the highest levels of particular C13-norisoprenoids, benzenoids, acetates, and sulfur containing compounds, Kraljevina was characterized by the highest concentration of a tentatively identified terpene γ-dehydro-ar-himachalene, while Maraština wine did not have specific unambiguous markers. The presented approach could be practically applied to improve defining, understanding, managing, and marketing varietal typicity of monovarietal winesFile | Dimensione | Formato | |
---|---|---|---|
2020 F Carlin.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.