It is possible to distinguish precious vanillin from Vanilla species (planifolia or tahitensis) from much less expensive synthetic and nature-identical vanillin on the basis of the stable isotope ratios of H and C ( 2 H/ 1 H, 13 C/ 12 C). Analysis is usually performed using GC-IRMS (Gas Chromatography - Isotope Ratio Mass Spectrometry) after solvent extraction of vanillin from the sample. Recently, head-space solid-phase microextraction (HS-SPME) has been proposed as an alternative for determining 13 C/ 12 C. The aim of this study was to develop a method to analyse 2 H/ 1 H in vanillin using SPME-GC-IRMS for the first time, by testing different operating conditions and comparing the results with those obtained after solvent extraction. The ultimate scope was to develop a quick, robust and effective method to measure 2 H/ 1 H and 13 C/ 12 C in vanillin to assess the authenticity of labelling. Almost 50 authentic samples from vanilla pods, nature-identical (ex) and synthetic vanillin and 4 commercial food products were taken into account. All the samples were subjected to HS-SPME-GC-IRMS analysis and most of them to GC-IRMS analysis after solvent extraction of vanillin. The SPME method developed for 2 H/ 1 H analysis guarantees the absence of isotopic fractionation, repeatability and reproducibility standard deviation of below 7‰ and savings in terms of time (from 30 to 5 min) and solvent. HS-SPME GC-IRMS analysis of δ 2 H and δ 13 C can be proposed as a rapid and robust method to discriminate different types of vanillin and assess the authenticity of natural vanillin, also contained in food matrices

Perini, M.; Pianezze, S.; Strojnik, L.; Camin, F. (2019). C and H stable isotope ratio analysis using solid-phase microextraction and gas chromatography-isotope ratio mass spectrometry for vanillin authentication. JOURNAL OF CHROMATOGRAPHY A, 1595: 168-173. doi: 10.1016/j.chroma.2019.02.032 handle: http://hdl.handle.net/10449/57168

C and H stable isotope ratio analysis using solid-phase microextraction and gas chromatography-isotope ratio mass spectrometry for vanillin authentication

Perini, Matteo
Primo
;
Pianezze, Silvia;Camin, Federica
Ultimo
2019-01-01

Abstract

It is possible to distinguish precious vanillin from Vanilla species (planifolia or tahitensis) from much less expensive synthetic and nature-identical vanillin on the basis of the stable isotope ratios of H and C ( 2 H/ 1 H, 13 C/ 12 C). Analysis is usually performed using GC-IRMS (Gas Chromatography - Isotope Ratio Mass Spectrometry) after solvent extraction of vanillin from the sample. Recently, head-space solid-phase microextraction (HS-SPME) has been proposed as an alternative for determining 13 C/ 12 C. The aim of this study was to develop a method to analyse 2 H/ 1 H in vanillin using SPME-GC-IRMS for the first time, by testing different operating conditions and comparing the results with those obtained after solvent extraction. The ultimate scope was to develop a quick, robust and effective method to measure 2 H/ 1 H and 13 C/ 12 C in vanillin to assess the authenticity of labelling. Almost 50 authentic samples from vanilla pods, nature-identical (ex) and synthetic vanillin and 4 commercial food products were taken into account. All the samples were subjected to HS-SPME-GC-IRMS analysis and most of them to GC-IRMS analysis after solvent extraction of vanillin. The SPME method developed for 2 H/ 1 H analysis guarantees the absence of isotopic fractionation, repeatability and reproducibility standard deviation of below 7‰ and savings in terms of time (from 30 to 5 min) and solvent. HS-SPME GC-IRMS analysis of δ 2 H and δ 13 C can be proposed as a rapid and robust method to discriminate different types of vanillin and assess the authenticity of natural vanillin, also contained in food matrices
Carbon
HS-SPME-GC-IRMS
Hydrogen
Stable isotope analysis
Vanilla species
Vanillin
Settore CHIM/10 - CHIMICA DEGLI ALIMENTI
2019
Perini, M.; Pianezze, S.; Strojnik, L.; Camin, F. (2019). C and H stable isotope ratio analysis using solid-phase microextraction and gas chromatography-isotope ratio mass spectrometry for vanillin authentication. JOURNAL OF CHROMATOGRAPHY A, 1595: 168-173. doi: 10.1016/j.chroma.2019.02.032 handle: http://hdl.handle.net/10449/57168
File in questo prodotto:
File Dimensione Formato  
2019 Perini JoCA.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 576.4 kB
Formato Adobe PDF
576.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/57168
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact