Cereal-based functional beverages represent social, economic, and environmental sustainable opportunities to cope with emerging trends in food consumption and global nutrition. Here we report, for the first time, the polyphasic characterization of three cereal-based kefir-like riboflavin-enriched beverages, obtained from oat, maize and barley flours, and their comparison with classical milk-based kefir. The four matrices were successfully fermented with commercial starters: i) milk-kefir and ii) water-kefir, proving the potential of cereal ingredients in the formulation of dairy-like fermented beverages with milk-kefir starter behavior better in these matrices. In the light of their potentiality, seven riboflavin-producing Andean Lactic Acid Bacteria (LAB) were tested for tolerance to food stresses commonly encountered during food fermentation. Moreover, the LAB strains investigated were screened for spontaneous riboflavin overproducing derivatives. Lactobacillus plantarum M5MA1-B2 with outstanding response to stress, was selected to improve riboflavin content in an in situ fortification approach. The combination of L. plantarum M5MA1-B2 riboflavin overproducing strain with milk kefir starter in oat, lead to cover, for one serving of 100 g, 11.4% of Recommended Dietary Allowance (RDA). Besides, addition of L. plantarum M5MA1-B2 improved performance of water kefir in oat and maize matrices. Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) analysis provided the on-line Volatile Organic Compounds profiles supporting the best combination of starter, LAB and cereal matrix for novel functional foods development.

Yépez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. (2019). In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. FOOD MICROBIOLOGY, 77: 61-68. doi: 10.1016/j.fm.2018.08.008 handle: http://hdl.handle.net/10449/50393

In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains

Khomenko, I.;Biasioli, F.;
2019-01-01

Abstract

Cereal-based functional beverages represent social, economic, and environmental sustainable opportunities to cope with emerging trends in food consumption and global nutrition. Here we report, for the first time, the polyphasic characterization of three cereal-based kefir-like riboflavin-enriched beverages, obtained from oat, maize and barley flours, and their comparison with classical milk-based kefir. The four matrices were successfully fermented with commercial starters: i) milk-kefir and ii) water-kefir, proving the potential of cereal ingredients in the formulation of dairy-like fermented beverages with milk-kefir starter behavior better in these matrices. In the light of their potentiality, seven riboflavin-producing Andean Lactic Acid Bacteria (LAB) were tested for tolerance to food stresses commonly encountered during food fermentation. Moreover, the LAB strains investigated were screened for spontaneous riboflavin overproducing derivatives. Lactobacillus plantarum M5MA1-B2 with outstanding response to stress, was selected to improve riboflavin content in an in situ fortification approach. The combination of L. plantarum M5MA1-B2 riboflavin overproducing strain with milk kefir starter in oat, lead to cover, for one serving of 100 g, 11.4% of Recommended Dietary Allowance (RDA). Besides, addition of L. plantarum M5MA1-B2 improved performance of water kefir in oat and maize matrices. Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) analysis provided the on-line Volatile Organic Compounds profiles supporting the best combination of starter, LAB and cereal matrix for novel functional foods development.
LAB
Riboflavin
Bio-fortification
Functional food
Cereal-based beverages
Settore CHIM/01 - CHIMICA ANALITICA
2019
Yépez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. (2019). In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. FOOD MICROBIOLOGY, 77: 61-68. doi: 10.1016/j.fm.2018.08.008 handle: http://hdl.handle.net/10449/50393
File in questo prodotto:
File Dimensione Formato  
yepez et al 2019 food microbiology 77 61-68.pdf

solo utenti autorizzati

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/50393
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 61
social impact