Primula veris subsp. veris L. is a perennial herbaceous and medicinal plant species the roots and flowers of which are a source of valuable pharmaceutical raw materials. The plant tissues are used to produce expectorant and diuretic drugs due to their high content of triterpene saponins and phenolic glycosides. Underground roots of P. veris can be obtained only through a destructive process during the plant’s harvesting. In the present study, an in vitro adventitious root production protocol was developed as an alternative way of production, focused on four species-specific secondary metabolites. Root explants were cultured in Murashing & Skoog liquid medium supplemented with 5.4 µM α-naphthaleneacetic acid, 0.5 µM kinetin, L-proline 100 mg/L, and 30 g/L sucrose, in the dark and under agitation. The effect of temperature (10, 15 and 22 ◦C) on biomass production was investigated. The content of two flavonoid compounds (primeverin and primulaverin), and two main triterpene saponins (primulic acid I and II) were determined after 60 days of culture and compared with 1.5-year-old soil-grown plants. The accumulated content (mg/g DW) of bioactive compounds of in vitro adventitious roots cultured under 22 ◦C was significantly higher than the other two temperatures of the study, being 9.71 mg/g DW in primulaverin, 0.09 mg/g DW in primeverin, 6.09 mg/g DW in primulic acid I, and 0.51 mg/g DW in primulic acid II. Compared to the soil-grown roots (10.23 mg/g DW primulaverin, 0.28 mg/g DW primeverin, 17.01 mg/g DW primulic acid I, 0.09 mg/g DW primulic acid II), the in vitro grown roots at 22 ◦C exhibited a 5.67-fold higher content in primulic acid II. However, primulic acid I and primeverin content were approximately three-fold higher in soil-grown roots, while primulaverin content were at similar levels for both in vitro at 22 ◦C and soil-grown roots. From our results, tissue culture of P. veris subsp. veris could serve not only for propagation but also for production of species-specific secondary metabolites such as primulic acid II through adventitious root cultures. This would therefore limit the uncontrolled collection of this plant from its natural environment and provide natural products free from pesticides in a sustainable way

Sarropoulou, V.; Sarrou, E.; Angeli, A.; Martens, S.; Maloupa, E.; Grigoriadou, K. (2023). Species-specific secondary metabolites from Primula veris subsp. veris obtained In Vitro adventitious root cultures: an alternative for sustainable production. SUSTAINABILITY, 15 (3): 24-52. doi: 10.3390/su15032452 handle: https://hdl.handle.net/10449/78195

Species-specific secondary metabolites from Primula veris subsp. veris obtained In Vitro adventitious root cultures: an alternative for sustainable production

Angeli, A.;Martens, S.;
2023-01-01

Abstract

Primula veris subsp. veris L. is a perennial herbaceous and medicinal plant species the roots and flowers of which are a source of valuable pharmaceutical raw materials. The plant tissues are used to produce expectorant and diuretic drugs due to their high content of triterpene saponins and phenolic glycosides. Underground roots of P. veris can be obtained only through a destructive process during the plant’s harvesting. In the present study, an in vitro adventitious root production protocol was developed as an alternative way of production, focused on four species-specific secondary metabolites. Root explants were cultured in Murashing & Skoog liquid medium supplemented with 5.4 µM α-naphthaleneacetic acid, 0.5 µM kinetin, L-proline 100 mg/L, and 30 g/L sucrose, in the dark and under agitation. The effect of temperature (10, 15 and 22 ◦C) on biomass production was investigated. The content of two flavonoid compounds (primeverin and primulaverin), and two main triterpene saponins (primulic acid I and II) were determined after 60 days of culture and compared with 1.5-year-old soil-grown plants. The accumulated content (mg/g DW) of bioactive compounds of in vitro adventitious roots cultured under 22 ◦C was significantly higher than the other two temperatures of the study, being 9.71 mg/g DW in primulaverin, 0.09 mg/g DW in primeverin, 6.09 mg/g DW in primulic acid I, and 0.51 mg/g DW in primulic acid II. Compared to the soil-grown roots (10.23 mg/g DW primulaverin, 0.28 mg/g DW primeverin, 17.01 mg/g DW primulic acid I, 0.09 mg/g DW primulic acid II), the in vitro grown roots at 22 ◦C exhibited a 5.67-fold higher content in primulic acid II. However, primulic acid I and primeverin content were approximately three-fold higher in soil-grown roots, while primulaverin content were at similar levels for both in vitro at 22 ◦C and soil-grown roots. From our results, tissue culture of P. veris subsp. veris could serve not only for propagation but also for production of species-specific secondary metabolites such as primulic acid II through adventitious root cultures. This would therefore limit the uncontrolled collection of this plant from its natural environment and provide natural products free from pesticides in a sustainable way
Methylated flavonoid glycosides
Primeverin
Primulaverin
Primulic acids
Triterpene saponins
UPLC-MS/MS
MRM analyses
Settore BIO/04 - FISIOLOGIA VEGETALE
2023
Sarropoulou, V.; Sarrou, E.; Angeli, A.; Martens, S.; Maloupa, E.; Grigoriadou, K. (2023). Species-specific secondary metabolites from Primula veris subsp. veris obtained In Vitro adventitious root cultures: an alternative for sustainable production. SUSTAINABILITY, 15 (3): 24-52. doi: 10.3390/su15032452 handle: https://hdl.handle.net/10449/78195
File in questo prodotto:
File Dimensione Formato  
2023 S Martens.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/78195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact