One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.
Pelizzo, P.; Stebel, M.; Medic, N.; Sist, P.; Vanzo, A.; Anesi, A.; Vrhovsek, U.; Tramer, F.; Passamonti, S. (2023-01). Cyanidin 3-glucoside targets a hepatic bilirubin transporter in rats. BIOMÉDECINE & PHARMACOTHÉRAPIE, 157: 114044. doi: 10.1016/j.biopha.2022.114044 handle: https://hdl.handle.net/10449/77915
Cyanidin 3-glucoside targets a hepatic bilirubin transporter in rats
Anesi, AndreaMembro del Collaboration Group
;Vrhovsek, UrskaMembro del Collaboration Group
;
2023-01-01
Abstract
One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.File | Dimensione | Formato | |
---|---|---|---|
2023 BP Anesi.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
3.24 MB
Formato
Adobe PDF
|
3.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.