Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation
Yanwen Low, D.; Micheau, P.; Mikael Koistinen, V.; Hanhineva, K.; Abrankó, L.; Rodriguez-Mateos, A.; Bento da Silva, A.; van Poucke, C.; Almeida, C.; Andres-Lacueva, C.; Rai, D.K.; Capanoglu, E.; Tomás Barberán, F.A.; Mattivi, F.; Schmidt, G.; Gürdeniz, G.; Valentová, K.; Bresciani, L.; Petrásková, L.; Ove Dragsted, L.; Philo, M.; Ulaszewska, M.; Mena, P.; González-Domínguez, R.; Garcia-Villalba, R.; Kamiloglu, S.; de Pascual-Teresa, S.; Durand, S.; Wiczkowski, W.; Rosário Bronze, M.; Stanstrup, J.; Manach, C. (2021). Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds. FOOD CHEMISTRY, 357: 129757. doi: 10.1016/j.foodchem.2021.129757 handle: http://hdl.handle.net/10449/68008
Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds
Mattivi, F.;Ulaszewska, M.;
2021-01-01
Abstract
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotationFile | Dimensione | Formato | |
---|---|---|---|
2021 FC Mattivi et al.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.