In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in the control of fruit ripening and color development. Although the ABA treatment of sweet cherry fruits has been reported to upregulate anthocyanin pathway-related genes or ABA pathway-related genes, the temporality of molecular and physiological events occurring during color development and the ABA control of these events during the color initiation are lacking in this species. In this work, we analyzed variations in the Index of Absorbance Difference (IAD), a maturity index, and total anthocyanins along with changes in transcript abundance of ABA and anthocyanin pathway-related genes, from light green to red fruit stages. PavNCED1 and ABA signaling pathway-related genes upregulated when fruits transitioned from light green to pink stage, whereas anthocyanin pathway-related transcripts increased from pink to the red stage, together with increases in the anthocyanin content and IAD, suggesting sequentiality in molecular and physiological events during color development. Additionally, ABA applied at color initiation in planta advanced IAD, increased anthocyanin content, and yielded darker fruits at harvest. These changes were accompanied by changes in the transcript accumulation of ABA and anthocyanin pathway-related genes. This in planta treatment of sweet cherry fruits with ABA confirms that ABA is a central player in the control of color initiation in sweet cherries, associated with the transcript accumulation of genes involved in ABA homeostasis and signaling, which is followed by the up-regulation of anthocyanin pathway-related genes and color development.

Kuhn, N.; Ponce, C.; Arellano, M.; Time, A.; Multari, S.; Martens, S.; Carrera, E.; Sagredo, B.; Donoso, J.M.; Meisel, L.A. (2021). ABA influences color initiation timing in P. avium L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes. TREE GENETICS & GENOMES, 17: 20. doi: 10.1007/s11295-021-01502-1 handle: http://hdl.handle.net/10449/58931

ABA influences color initiation timing in P. avium L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes

Multari, S.;Martens, S.;
2021-01-01

Abstract

In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in the control of fruit ripening and color development. Although the ABA treatment of sweet cherry fruits has been reported to upregulate anthocyanin pathway-related genes or ABA pathway-related genes, the temporality of molecular and physiological events occurring during color development and the ABA control of these events during the color initiation are lacking in this species. In this work, we analyzed variations in the Index of Absorbance Difference (IAD), a maturity index, and total anthocyanins along with changes in transcript abundance of ABA and anthocyanin pathway-related genes, from light green to red fruit stages. PavNCED1 and ABA signaling pathway-related genes upregulated when fruits transitioned from light green to pink stage, whereas anthocyanin pathway-related transcripts increased from pink to the red stage, together with increases in the anthocyanin content and IAD, suggesting sequentiality in molecular and physiological events during color development. Additionally, ABA applied at color initiation in planta advanced IAD, increased anthocyanin content, and yielded darker fruits at harvest. These changes were accompanied by changes in the transcript accumulation of ABA and anthocyanin pathway-related genes. This in planta treatment of sweet cherry fruits with ABA confirms that ABA is a central player in the control of color initiation in sweet cherries, associated with the transcript accumulation of genes involved in ABA homeostasis and signaling, which is followed by the up-regulation of anthocyanin pathway-related genes and color development.
Abscisic acid
Anthocyanins
ABA pathway-related gene expression
Color change
Fruit ripening
Sweet cherry
Settore AGR/07 - GENETICA AGRARIA
2021
Kuhn, N.; Ponce, C.; Arellano, M.; Time, A.; Multari, S.; Martens, S.; Carrera, E.; Sagredo, B.; Donoso, J.M.; Meisel, L.A. (2021). ABA influences color initiation timing in P. avium L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes. TREE GENETICS & GENOMES, 17: 20. doi: 10.1007/s11295-021-01502-1 handle: http://hdl.handle.net/10449/58931
File in questo prodotto:
File Dimensione Formato  
2021 TGG Martens.pdf

solo utenti autorizzati

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/58931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact