Recent trends in wine making have led to the commercial production and use of nonSaccharomyces yeasts in wine making. Very little is understood however about how the use of these yeasts affects the final product. The purpose of this study was to evaluate the chemical and sensory characteristics of wine fermented with non-Saccharomyces yeasts using a sequential inoculation strategy. Targeted and untargeted analysis techniques were developed to help identify and quantify the volatile fraction of the wines produced. By combining this and sensory data we were able to build the most comprehensive picture to date of the volatile wine metabolome as it is influenced by various yeast species. The first step was a literature review dedicated to summarizing the current knowledge surrounding the metabolomics of the yeasts used in the subsequent chapters. Specifically, we sought to understand what is currently known about the use of non-Saccharomyces yeasts in wine. Also investigated were the technologies currently being used in the fields of food, wine, and yeast metabolomics. The goal was to provide the background necessary to understand the research in the subsequent chapters, as well as aid in the development and planning of the experiments discussed here within. Two stages of research were conducted. Not only did we want to understand the effects of non-Saccharomyces yeasts on wine aroma but we were interested in whether or not these effects were the same in both red and white wines. As such the first research stage, was a preliminary investigation of the yeast response to two different grape musts. Five different species of nonSaccharomyces yeasts, were chosen and grown in both Shiraz and Sauvignon blanc must and samples were collected for analysis just prior to the point at which Saccharomyces cerevisiae would usually be added to complete the fermentation. The fermentation rates were monitored and the chemical profile of the musts was evaluated. A solid-phase microextraction-Gas Chromatography-Mass spectrometry method that targeted 90 different compounds known to be found in wine was used to evaluate the headspace of the fermented musts. The results obtained helped shape the experimental design for the next phase of the project. The scale was increased to full wine production to evaluate how the yeasts could influence a completed wine product. Again, Sauvignon blanc and Shiraz were chosen and an untargeted chemical analysis method was developed to ensure that the widest possible range of analytes could be evaluated. The finished Sauvignon blanc wine was also subjected to sensory analysis which provided even greater insight into how these inoculation strategies can change the sensory profile of the wine. This research was undertaken in an attempt to answer the questions of ‘What will the wine smell and taste like if I use non-Saccharomyces yeasts during fermentation?’ and ‘Could it be superior to standard wines only inoculated with S. cerevisiae?’ The experiments conducted provided a great deal of insight that can help to begin answering these questions but there is much that remains unknown. In general, we were able to build a detailed volatiles chemical profile for each of the yeast treatments used in both Shiraz and Sauvignon blanc. While some treatments proved to be somewhat detrimental to the aroma and flavor of the wine, others showed promise in possibly enhancing its complexity. We were also able to demonstrate that the yeasts behave very differently in the two different musts. As comprehensive as these studies were, future work should be undertaken to improve the understanding of why and how these yeasts can make an impact on wine production. For example, our work did not include any genetic expression analysis of the yeasts used. Correlating genetic expression to quantitative chemical analysis would provide a much more complete picture of the wine yeast metabolome

Whitener, Margaret Elizabeth Beckner (2016-03-16). Metabolomic profiling of non-Saccharomyces yeasts in wine. (Doctoral Thesis). Stellenbosch University, Institute for Wine Biotechnology, Faculty of AgriSciences, a.y. 2015/2016, Wine Biotechnology, FIRST. handle: http://hdl.handle.net/10449/34101

Metabolomic profiling of non-Saccharomyces yeasts in wine

Whitener, Margaret Elizabeth Beckner
2016-03-16

Abstract

Recent trends in wine making have led to the commercial production and use of nonSaccharomyces yeasts in wine making. Very little is understood however about how the use of these yeasts affects the final product. The purpose of this study was to evaluate the chemical and sensory characteristics of wine fermented with non-Saccharomyces yeasts using a sequential inoculation strategy. Targeted and untargeted analysis techniques were developed to help identify and quantify the volatile fraction of the wines produced. By combining this and sensory data we were able to build the most comprehensive picture to date of the volatile wine metabolome as it is influenced by various yeast species. The first step was a literature review dedicated to summarizing the current knowledge surrounding the metabolomics of the yeasts used in the subsequent chapters. Specifically, we sought to understand what is currently known about the use of non-Saccharomyces yeasts in wine. Also investigated were the technologies currently being used in the fields of food, wine, and yeast metabolomics. The goal was to provide the background necessary to understand the research in the subsequent chapters, as well as aid in the development and planning of the experiments discussed here within. Two stages of research were conducted. Not only did we want to understand the effects of non-Saccharomyces yeasts on wine aroma but we were interested in whether or not these effects were the same in both red and white wines. As such the first research stage, was a preliminary investigation of the yeast response to two different grape musts. Five different species of nonSaccharomyces yeasts, were chosen and grown in both Shiraz and Sauvignon blanc must and samples were collected for analysis just prior to the point at which Saccharomyces cerevisiae would usually be added to complete the fermentation. The fermentation rates were monitored and the chemical profile of the musts was evaluated. A solid-phase microextraction-Gas Chromatography-Mass spectrometry method that targeted 90 different compounds known to be found in wine was used to evaluate the headspace of the fermented musts. The results obtained helped shape the experimental design for the next phase of the project. The scale was increased to full wine production to evaluate how the yeasts could influence a completed wine product. Again, Sauvignon blanc and Shiraz were chosen and an untargeted chemical analysis method was developed to ensure that the widest possible range of analytes could be evaluated. The finished Sauvignon blanc wine was also subjected to sensory analysis which provided even greater insight into how these inoculation strategies can change the sensory profile of the wine. This research was undertaken in an attempt to answer the questions of ‘What will the wine smell and taste like if I use non-Saccharomyces yeasts during fermentation?’ and ‘Could it be superior to standard wines only inoculated with S. cerevisiae?’ The experiments conducted provided a great deal of insight that can help to begin answering these questions but there is much that remains unknown. In general, we were able to build a detailed volatiles chemical profile for each of the yeast treatments used in both Shiraz and Sauvignon blanc. While some treatments proved to be somewhat detrimental to the aroma and flavor of the wine, others showed promise in possibly enhancing its complexity. We were also able to demonstrate that the yeasts behave very differently in the two different musts. As comprehensive as these studies were, future work should be undertaken to improve the understanding of why and how these yeasts can make an impact on wine production. For example, our work did not include any genetic expression analysis of the yeasts used. Correlating genetic expression to quantitative chemical analysis would provide a much more complete picture of the wine yeast metabolome
Vrhovsek, Urska
Wine
Metabolomics
Non-Saccaromyces
SPME-GCxGC-TOFMS
Settore CHIM/10 - CHIMICA DEGLI ALIMENTI
16-mar-2016
2015/2016
Wine Biotechnology
FIRST
Whitener, Margaret Elizabeth Beckner (2016-03-16). Metabolomic profiling of non-Saccharomyces yeasts in wine. (Doctoral Thesis). Stellenbosch University, Institute for Wine Biotechnology, Faculty of AgriSciences, a.y. 2015/2016, Wine Biotechnology, FIRST. handle: http://hdl.handle.net/10449/34101
File in questo prodotto:
File Dimensione Formato  
Whitener ME_Full dissertation.pdf

accesso aperto

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/34101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact