Biogas from the dry anaerobic digestion of OFMSWfrom a pilot plant was analyzed in terms of sulfur compound removal through a gas cleaning section based on activated carbons, from lab. scale to real plant. In general, even the presence of sub-ppm(v) of selected biogas contaminants can hamper the life-time of SOFC systems. For this reason, stringent fuel cell quality requirements apply. The challenge of real-time monitoring of the performance and quality of the fuel feeding the SOFC can be solved through the use of PTR-MS. This technique – once properly and preliminary calibrated as shown in this study – has the capability of rapidly resolving the wide spectrum of contaminants slipping from the clean-up section. A commercial sorbent material was adopted to remove sulfur compounds and was tested for 80 h in a pilot gas cleaning system. H2S, the main sulfur compound detected (99.36% of total sulfurs) was removed to a satisfactory level. The sulfur compounds elute from the cleaning section in the following order: CH3SH, CH3SCH3, CH3CH2CH2SH, CH3(CH2)3SH, CS2 and H2S. The filter section was able to provide a clean biogas (1 ppm(v)) throughout the whole experimental trial (almost 450 h)with an average H2S inlet concentration of 52 ppm(v)
Papurello, D.; Tognana, L.; Lanzini, A.; Smeacetto, F.; Santarelli, M.; Belcari, I.; Silvestri, S.; Biasioli, F. (2015). Proton transfer reaction mass spectrometry technique for the monitoring of volatile sulfur compounds in a fuel cell quality clean-up system. FUEL PROCESSING TECHNOLOGY, 130 (1): 136-146. doi: 10.1016/j.fuproc.2014.09.041 handle: http://hdl.handle.net/10449/25079
Proton transfer reaction mass spectrometry technique for the monitoring of volatile sulfur compounds in a fuel cell quality clean-up system
Silvestri, Silvia;Biasioli, Franco
2015-01-01
Abstract
Biogas from the dry anaerobic digestion of OFMSWfrom a pilot plant was analyzed in terms of sulfur compound removal through a gas cleaning section based on activated carbons, from lab. scale to real plant. In general, even the presence of sub-ppm(v) of selected biogas contaminants can hamper the life-time of SOFC systems. For this reason, stringent fuel cell quality requirements apply. The challenge of real-time monitoring of the performance and quality of the fuel feeding the SOFC can be solved through the use of PTR-MS. This technique – once properly and preliminary calibrated as shown in this study – has the capability of rapidly resolving the wide spectrum of contaminants slipping from the clean-up section. A commercial sorbent material was adopted to remove sulfur compounds and was tested for 80 h in a pilot gas cleaning system. H2S, the main sulfur compound detected (99.36% of total sulfurs) was removed to a satisfactory level. The sulfur compounds elute from the cleaning section in the following order: CH3SH, CH3SCH3, CH3CH2CH2SH, CH3(CH2)3SH, CS2 and H2S. The filter section was able to provide a clean biogas (1 ppm(v)) throughout the whole experimental trial (almost 450 h)with an average H2S inlet concentration of 52 ppm(v)File | Dimensione | Formato | |
---|---|---|---|
Fuel Processing Technology 130 (2015) 136–146.pdf
non disponibili
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.