The probability that freshly nucleated nanoparticles can survive to become cloud condensation nuclei is highly sensitive to particle growth rates. Much of the growth of newly formed ambient nanoparticles can be attributed to oxidized organic vapors originating from biogenic precursor gases. In this study we investigated the chemical composition of size-selected biogenic nanoparticles in the size range from 10 to 40 nm. Particles were formed in a flow tube reactor by ozonolysis ofα-pinene and analyzed with a Thermal Desorption Chemical Ionization Mass Spectrometer. While we found similar composition in 10 and 20 nm particles, the relative amounts of individual species varied significantly when compared to 40 nm particles. Smaller particles (10 and 20 nm) were characterized by enhancements in carboxylic acids and larger particles (40 nm) showed higher concentrations of carbonyl-containing compounds and low molecular weight organic acids. This composition change from smaller to larger size particles reflects a vapor pressure increase of the condensing vapors by 1–2 orders of magnitude indicating that the Kelvin effect plays a decisive role in the growth of biogenic nanoparticles

Winkler, P.M.; Ortega, J.; Karl, T.; Cappellin, L.; Friedli, H.L.; Barsanti, K.; Mcmurry, P.H.; Smith, J.N. (2012). Identification of the biogenic compounds responsible for size-dependent nanoparticle growth. GEOPHYSICAL RESEARCH LETTERS, 39 (20): L20815. doi: 10.1029/2012GL053253 handle: http://hdl.handle.net/10449/22451

Identification of the biogenic compounds responsible for size-dependent nanoparticle growth

Cappellin, Luca;
2012-01-01

Abstract

The probability that freshly nucleated nanoparticles can survive to become cloud condensation nuclei is highly sensitive to particle growth rates. Much of the growth of newly formed ambient nanoparticles can be attributed to oxidized organic vapors originating from biogenic precursor gases. In this study we investigated the chemical composition of size-selected biogenic nanoparticles in the size range from 10 to 40 nm. Particles were formed in a flow tube reactor by ozonolysis ofα-pinene and analyzed with a Thermal Desorption Chemical Ionization Mass Spectrometer. While we found similar composition in 10 and 20 nm particles, the relative amounts of individual species varied significantly when compared to 40 nm particles. Smaller particles (10 and 20 nm) were characterized by enhancements in carboxylic acids and larger particles (40 nm) showed higher concentrations of carbonyl-containing compounds and low molecular weight organic acids. This composition change from smaller to larger size particles reflects a vapor pressure increase of the condensing vapors by 1–2 orders of magnitude indicating that the Kelvin effect plays a decisive role in the growth of biogenic nanoparticles
Biogenic nanoparticles
Chemical composition
Size-dependent growth
Settore FIS/01 - FISICA SPERIMENTALE
2012
Winkler, P.M.; Ortega, J.; Karl, T.; Cappellin, L.; Friedli, H.L.; Barsanti, K.; Mcmurry, P.H.; Smith, J.N. (2012). Identification of the biogenic compounds responsible for size-dependent nanoparticle growth. GEOPHYSICAL RESEARCH LETTERS, 39 (20): L20815. doi: 10.1029/2012GL053253 handle: http://hdl.handle.net/10449/22451
File in questo prodotto:
File Dimensione Formato  
2012 GRL Winkler et al.pdf

solo utenti autorizzati

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 429.64 kB
Formato Adobe PDF
429.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/22451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 56
social impact