RATIONALE Carbon, hydrogen and oxygen (C, H and O) stable isotope ratios of whole wood and components are commonly used as paleoclimate proxies. In this work we consider eight different proxies in order to discover the most suitable wood component and stable isotope ratio to provide the strongest climate signal in Picea abies in a southeastern Alpine region (Trentino, Italy). METHODS delta 13C, delta 18O and delta 2H values in whole wood and cellulose, and delta 13C and delta 2H values in lignin methoxyl groups were measured. Analysis was performed using an Isotopic Ratio Mass Spectrometer coupled with an Elemental Analyser for measuring 13C/12C and a Pyrolyser for measuring 2H/1H and 18O/16O. The data were evaluated by Principal Component Analysis, and a simple Pearson's correlation between isotope chronologies and climatic features, and multiple linear regression were performed to evaluate the data. RESULTS Each stable isotope ratio in cellulose and lignin methoxyl differs significantly from the same stable isotope ratio in whole wood, the values begin higher in cellulose and lignin except for the lignin delta 2H values. Significant correlations were found between the whole wood and the cellulose fractions for each isotope ratio. Overall, the highest correlations with temperature were found with the delta 18O and delta 2H values in whole wood, whereas no significant correlations were found between isotope proxies and precipitation. CONCLUSIONS delta 18O and delta 2H values in whole wood provide the best temperature signals in Picea abies in the northern Italian study area. Extraction of cellulose and lignin and analysis of other isotopic ratios do not seem to be necessary

Gori, Y.; Wehrens, R.; Greule, M.; Keppler, F.; Ziller, L.; La Porta, N.; Camin, F. (2013). Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 27 (1): 265-275. doi: 10.1002/rcm.6446 handle: http://hdl.handle.net/10449/21676

Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies

Gori, Yuri;Ziller, Luca;La Porta, Nicola;Camin, Federica
2013-01-01

Abstract

RATIONALE Carbon, hydrogen and oxygen (C, H and O) stable isotope ratios of whole wood and components are commonly used as paleoclimate proxies. In this work we consider eight different proxies in order to discover the most suitable wood component and stable isotope ratio to provide the strongest climate signal in Picea abies in a southeastern Alpine region (Trentino, Italy). METHODS delta 13C, delta 18O and delta 2H values in whole wood and cellulose, and delta 13C and delta 2H values in lignin methoxyl groups were measured. Analysis was performed using an Isotopic Ratio Mass Spectrometer coupled with an Elemental Analyser for measuring 13C/12C and a Pyrolyser for measuring 2H/1H and 18O/16O. The data were evaluated by Principal Component Analysis, and a simple Pearson's correlation between isotope chronologies and climatic features, and multiple linear regression were performed to evaluate the data. RESULTS Each stable isotope ratio in cellulose and lignin methoxyl differs significantly from the same stable isotope ratio in whole wood, the values begin higher in cellulose and lignin except for the lignin delta 2H values. Significant correlations were found between the whole wood and the cellulose fractions for each isotope ratio. Overall, the highest correlations with temperature were found with the delta 18O and delta 2H values in whole wood, whereas no significant correlations were found between isotope proxies and precipitation. CONCLUSIONS delta 18O and delta 2H values in whole wood provide the best temperature signals in Picea abies in the northern Italian study area. Extraction of cellulose and lignin and analysis of other isotopic ratios do not seem to be necessary
Settore BIO/03 - BOTANICA AMBIENTALE E APPLICATA
2013
Gori, Y.; Wehrens, R.; Greule, M.; Keppler, F.; Ziller, L.; La Porta, N.; Camin, F. (2013). Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 27 (1): 265-275. doi: 10.1002/rcm.6446 handle: http://hdl.handle.net/10449/21676
File in questo prodotto:
File Dimensione Formato  
2012 RCMS Gori et al.pdf

solo utenti autorizzati

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 926.13 kB
Formato Adobe PDF
926.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/21676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
social impact