Feline immunodeficiency virus (FIV) shares structural similarities with human immunodeficiency virus (HIV): the surface glycoprotein gp36 corresponds to the HIV gp41, which drives virus-host cell interactions and is targeted by the peptide entry inhibitor enfuvirtide. Following a similar drug design strategy for the development of an anti-FIV therapy, the present study investigates 627-646gp36 NHR, a peptide sequence derived from a region of gp36 that was previously found to interfere with the antiviral activity of the peptide C8, which instead derives from the gp36 MPER. CD, NMR, and MD simulations were employed to probe the conformational characteristics of 627-646gp36 NHR in the membrane-mimicking environment of SDS micelles. Our data show that 627-646gp36 NHR is characterized by three dynamic helix structures. MD simulations involving 627-646gp36 NHR, C8, and a larger protein, including the CHR and MPER regions, suggest that the interaction of C8 with the MPER region, the origin of the antiviral activity of C8, is disfavored in the presence of 627-646gp36 NHR in the simulation. This evidence can be useful for interpreting the molecular mechanism that leads to interference with the activity of C8, providing information on the folding/unfolding mechanism of the viral glycoprotein to design new strategies to inhibit viral entry

Santoro, A.; Buonocore, M.; Firoznezhad, M.; Grimaldi, M.; D'Ursi, A.M. (2024). Conformational analysis of a new peptide derived from feline immunodeficiency virus gp36 in SDS micelles: an NMR‐MD based investigation. JOURNAL OF PEPTIDE SCIENCE, 30 (12): e3645. doi: 10.1002/psc.3645 handle: https://hdl.handle.net/10449/90315

Conformational analysis of a new peptide derived from feline immunodeficiency virus gp36 in SDS micelles: an NMR‐MD based investigation

Firoznezhad, M.;
2024-01-01

Abstract

Feline immunodeficiency virus (FIV) shares structural similarities with human immunodeficiency virus (HIV): the surface glycoprotein gp36 corresponds to the HIV gp41, which drives virus-host cell interactions and is targeted by the peptide entry inhibitor enfuvirtide. Following a similar drug design strategy for the development of an anti-FIV therapy, the present study investigates 627-646gp36 NHR, a peptide sequence derived from a region of gp36 that was previously found to interfere with the antiviral activity of the peptide C8, which instead derives from the gp36 MPER. CD, NMR, and MD simulations were employed to probe the conformational characteristics of 627-646gp36 NHR in the membrane-mimicking environment of SDS micelles. Our data show that 627-646gp36 NHR is characterized by three dynamic helix structures. MD simulations involving 627-646gp36 NHR, C8, and a larger protein, including the CHR and MPER regions, suggest that the interaction of C8 with the MPER region, the origin of the antiviral activity of C8, is disfavored in the presence of 627-646gp36 NHR in the simulation. This evidence can be useful for interpreting the molecular mechanism that leads to interference with the activity of C8, providing information on the folding/unfolding mechanism of the viral glycoprotein to design new strategies to inhibit viral entry
Feline Immunodeficiency Virus
FIV
MD simulation
NMR
Peptides
Settore BIOS-09/A - Biochimica clinica e biologia molecolare clinica
2024
Santoro, A.; Buonocore, M.; Firoznezhad, M.; Grimaldi, M.; D'Ursi, A.M. (2024). Conformational analysis of a new peptide derived from feline immunodeficiency virus gp36 in SDS micelles: an NMR‐MD based investigation. JOURNAL OF PEPTIDE SCIENCE, 30 (12): e3645. doi: 10.1002/psc.3645 handle: https://hdl.handle.net/10449/90315
File in questo prodotto:
File Dimensione Formato  
2024 JPS Firoznezhad.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/90315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact