Europe has committed to upscale ecosystems protection to include 30% of land and sea. However, due to historical overexploitation of natural assets, the available area for biodiversity protection is severely limited. Riparian zones are natural ecotones between aquatic and terrestrial ecosystems, contributing disproportionately to regional biodiversity and providing multiple ecosystem functions and services. Due to this and their branching geometry, riparian networks form a vast system of ‘blue-green arteries’ which physically and functionally connect multiple ecosystems over elevation gradients, despite covering a relatively small area of the basin. Hence, RIPARIANET argues that developing approaches able to optimise the spatial conservation of natural stream-riparian networks represent a flagship example of biodiversity protection in the EU. Although the integrity of riparian zones is fundamental for the achievement of multiple EU environmental objectives, the lack of a standardised framework for biodiversity assessment and protection across Member States has led to extensive impairment of riparian areas and frequent stakeholder conflicts. The main objective of RIPARIANET is to leverage the increasing resolution of remote sensing information to provide practitioners with evidence-based guidance and approaches to biodiversity conservation. Key questions include: i) how can we remotely assess riparian integrity and identify areas which provide effective connectivity allowing species biodiversity and ecosystem functions to persist through meta-ecological processes? ii) how can we disentangle the influence of local- and network-scale stressors and processes on riparian biodiversity to better implement river basin management schemes? iii) to what extent do currently existing protected areas in rivers account for the geometry of riparian networks and their multifunctionality? We will address these questions in riparian networks within six river basins in Europe, including Boreal, Continental, Alpine, Temperate and Mediterranean systems. First, we will gather local needs and interests from key stakeholders together with satellite imagery and GIS environmental data for all basins. Then, riparian and river ecosystems functions will be modelled and ecological hotspots will be identified through a GIS-based multi-criteria approach, including stakeholder inputs. Then, we will collect in situ data to assess multiple biodiversity and stressors at the local scale and, subsequently, scale-up this information to the network scale using geostatistical tools and advanced modelling. This knowledge will be conveyed to managers at local and EU scales in the form of decision-support tools allowing decision-makers to identify protection gaps and ecological hotspots along riparian networks, based on multiple biodiversity, functional and connectivity criteria.

Larsen, S.; Alvarez-Martinez, J.M.; Barquin, J.; Bruno, M.C.; Concostrina Zubiri, L.; Gallitelli, L.; Jonsson, M.; Laux, M.; Pace, G.; Scalici, M.; Schulz, R. (2023). RIPARIANET - Prioritising riparian ecotones to sustain and connect multiple biodiversity and functional components in river networks. RESEARCH IDEAS AND OUTCOMES, 9: e108807. doi: 10.3897/rio.9.e108807 handle: https://hdl.handle.net/10449/81475

RIPARIANET - Prioritising riparian ecotones to sustain and connect multiple biodiversity and functional components in river networks

Larsen, Stefano
Primo
;
Bruno, Maria Cristina;
2023-01-01

Abstract

Europe has committed to upscale ecosystems protection to include 30% of land and sea. However, due to historical overexploitation of natural assets, the available area for biodiversity protection is severely limited. Riparian zones are natural ecotones between aquatic and terrestrial ecosystems, contributing disproportionately to regional biodiversity and providing multiple ecosystem functions and services. Due to this and their branching geometry, riparian networks form a vast system of ‘blue-green arteries’ which physically and functionally connect multiple ecosystems over elevation gradients, despite covering a relatively small area of the basin. Hence, RIPARIANET argues that developing approaches able to optimise the spatial conservation of natural stream-riparian networks represent a flagship example of biodiversity protection in the EU. Although the integrity of riparian zones is fundamental for the achievement of multiple EU environmental objectives, the lack of a standardised framework for biodiversity assessment and protection across Member States has led to extensive impairment of riparian areas and frequent stakeholder conflicts. The main objective of RIPARIANET is to leverage the increasing resolution of remote sensing information to provide practitioners with evidence-based guidance and approaches to biodiversity conservation. Key questions include: i) how can we remotely assess riparian integrity and identify areas which provide effective connectivity allowing species biodiversity and ecosystem functions to persist through meta-ecological processes? ii) how can we disentangle the influence of local- and network-scale stressors and processes on riparian biodiversity to better implement river basin management schemes? iii) to what extent do currently existing protected areas in rivers account for the geometry of riparian networks and their multifunctionality? We will address these questions in riparian networks within six river basins in Europe, including Boreal, Continental, Alpine, Temperate and Mediterranean systems. First, we will gather local needs and interests from key stakeholders together with satellite imagery and GIS environmental data for all basins. Then, riparian and river ecosystems functions will be modelled and ecological hotspots will be identified through a GIS-based multi-criteria approach, including stakeholder inputs. Then, we will collect in situ data to assess multiple biodiversity and stressors at the local scale and, subsequently, scale-up this information to the network scale using geostatistical tools and advanced modelling. This knowledge will be conveyed to managers at local and EU scales in the form of decision-support tools allowing decision-makers to identify protection gaps and ecological hotspots along riparian networks, based on multiple biodiversity, functional and connectivity criteria.
Riparian zones
River networks
Remote Sensing
Bats
Microbiome
Plastics
Contaminants
Subsidies
Aquatic-terrestial linkages
Settore BIO/07 - ECOLOGIA
2023
Larsen, S.; Alvarez-Martinez, J.M.; Barquin, J.; Bruno, M.C.; Concostrina Zubiri, L.; Gallitelli, L.; Jonsson, M.; Laux, M.; Pace, G.; Scalici, M.; Schulz, R. (2023). RIPARIANET - Prioritising riparian ecotones to sustain and connect multiple biodiversity and functional components in river networks. RESEARCH IDEAS AND OUTCOMES, 9: e108807. doi: 10.3897/rio.9.e108807 handle: https://hdl.handle.net/10449/81475
File in questo prodotto:
File Dimensione Formato  
2023 RIO Larsen.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 358.03 kB
Formato Adobe PDF
358.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/81475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact