Due to increased frequency of cyanobacterial blooms and emerging evidence of cyanotoxicity in biofilm, reliable methods for early cyanotoxin threat detection are of major importance for protection of human, animal and environmental health. To complement the current methods of risk assessment, this study aimed to evaluate selected qPCR assays for detection of potentially toxic cyanobacteria in environmental samples. In the course of one year, 25 plankton and 23 biofilm samples were collected from 15 water bodies in Slovenia. Three different analyses were performed and compared to each other; qPCR targeting mcyE, cyrJ and sxtA genes involved in cyanotoxin production, LC-MS/MS quantifying microcystin, cylindrospermopsin and saxitoxin concentration, and microscopic analyses identifying potentially toxic cyanobacterial taxa. qPCR analyses detected potentially toxic Microcystis in 10 lake plankton samples, and potentially toxic Planktothrix cells in 12 lake plankton and one lake biofilm sample. A positive correlation was observed between numbers of mcyE gene copies and microcystin concentrations. Potential cylindrospermopsin- and saxitoxin-producers were detected in three and seven lake biofilm samples, respectively. The study demonstrated a potential for cyanotoxin production that was left undetected by traditional methods in both plankton and biofilm samples. Thus, the qPCR method could be useful in regular monitoring of water bodies to improve risk assessment and enable timely measures.

Zupančič, M.; Kogovšek, P.; Šter, T.; Remec Rekar, Š.; Cerasino, L.; Baebler, Š.; Krivograd Klemenčič, A.; Eleršek, T. (2021). Potentially toxic planktic and benthic Cyanobacteria in Slovenian freshwater bodies: detection by quantitative PCR. TOXINS, 13 (2): 133. doi: 10.3390/toxins13020133 handle: http://hdl.handle.net/10449/67568

Potentially toxic planktic and benthic Cyanobacteria in Slovenian freshwater bodies: detection by quantitative PCR

Cerasino, Leonardo;
2021-01-01

Abstract

Due to increased frequency of cyanobacterial blooms and emerging evidence of cyanotoxicity in biofilm, reliable methods for early cyanotoxin threat detection are of major importance for protection of human, animal and environmental health. To complement the current methods of risk assessment, this study aimed to evaluate selected qPCR assays for detection of potentially toxic cyanobacteria in environmental samples. In the course of one year, 25 plankton and 23 biofilm samples were collected from 15 water bodies in Slovenia. Three different analyses were performed and compared to each other; qPCR targeting mcyE, cyrJ and sxtA genes involved in cyanotoxin production, LC-MS/MS quantifying microcystin, cylindrospermopsin and saxitoxin concentration, and microscopic analyses identifying potentially toxic cyanobacterial taxa. qPCR analyses detected potentially toxic Microcystis in 10 lake plankton samples, and potentially toxic Planktothrix cells in 12 lake plankton and one lake biofilm sample. A positive correlation was observed between numbers of mcyE gene copies and microcystin concentrations. Potential cylindrospermopsin- and saxitoxin-producers were detected in three and seven lake biofilm samples, respectively. The study demonstrated a potential for cyanotoxin production that was left undetected by traditional methods in both plankton and biofilm samples. Thus, the qPCR method could be useful in regular monitoring of water bodies to improve risk assessment and enable timely measures.
Cyanotoxin detection
Harmful cyanobacterial blooms
Next-generation biomonitoring
Real-time PCR
qPCR
LC-MS/MS
Microcystin
Cylindrospermopsin
Saxitoxin
Settore BIO/07 - ECOLOGIA
2021
Zupančič, M.; Kogovšek, P.; Šter, T.; Remec Rekar, Š.; Cerasino, L.; Baebler, Š.; Krivograd Klemenčič, A.; Eleršek, T. (2021). Potentially toxic planktic and benthic Cyanobacteria in Slovenian freshwater bodies: detection by quantitative PCR. TOXINS, 13 (2): 133. doi: 10.3390/toxins13020133 handle: http://hdl.handle.net/10449/67568
File in questo prodotto:
File Dimensione Formato  
2021_Zupancic et al_Toxins.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/67568
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact