Tick-borne encephalitis is an important zoonosis in many parts of north-western, central and eastern Europe, Russia and the Far East, with considerable altitudinal and latitudinal shifts described during recent decades. The reported routes of transmission for TBE virus include the saliva-activated non-viraemic transmission between co-feeding ticks taking place on rodent hosts. During the period 2001–2014, a population of the yellow-necked mouse (Apodemus flavicollis), which is considered among the most efficient TBE competent host, especially in central and western Europe, was intensively live-trapped in a known TBE focus in the Province of Trento, Italy. Individual live-trapped mice were checked for the number and position of feeding ticks and serologically screened for TBEv antibodies. A combined effect of climatic conditions and density of both roe deer and mice on the number of co-feeding tick groups was observed. Specifically, the occurrence of co-feeding ticks on mice during the questing season was affected by autumnal cooling in the previous season. On the other hand, co-feeding occurrence was also positively associated with roe deer abundance, while mouse density showed a hump-shaped pattern. Individual features of A. flavicollis such as weight and sex also affected co-feeding occurrence with the heaviest (breeding adult) males carrying more co-feeding ticks. We also found that the overall number of co-feeding ticks on mice positively affected TBEv antibody detection in this species the following year. In conclusion, a specific combination of climatic conditions in conjunction with certain rodent and roe deer densities are the principal determinants of the number of co-feeding ticks on A. flavicollis and, consequently, TBEv circulation. These variables can be used to provide an early warning signal for a TBE hazard, thus representing a useful tool for Public Health authorities to prepare action for prevention and control within TBEv circulation areas
Rosà, R.; Tagliapietra, V.; Manica, M.; Arnoldi, D.; Hauffe, H.C.; Rossi, C.; Rosso, F.; Henttonen, H.; Rizzoli, A. (2019). Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 49 (10): 779-787. doi: 10.1016/j.ijpara.2019.05.006 handle: http://hdl.handle.net/10449/57530
Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy
Rosà, R.Primo
;Tagliapietra, V.
;Manica, M.;Arnoldi, D.;Hauffe, H. C.;Rossi, C.;Rosso, F.;Rizzoli, A.Ultimo
2019-01-01
Abstract
Tick-borne encephalitis is an important zoonosis in many parts of north-western, central and eastern Europe, Russia and the Far East, with considerable altitudinal and latitudinal shifts described during recent decades. The reported routes of transmission for TBE virus include the saliva-activated non-viraemic transmission between co-feeding ticks taking place on rodent hosts. During the period 2001–2014, a population of the yellow-necked mouse (Apodemus flavicollis), which is considered among the most efficient TBE competent host, especially in central and western Europe, was intensively live-trapped in a known TBE focus in the Province of Trento, Italy. Individual live-trapped mice were checked for the number and position of feeding ticks and serologically screened for TBEv antibodies. A combined effect of climatic conditions and density of both roe deer and mice on the number of co-feeding tick groups was observed. Specifically, the occurrence of co-feeding ticks on mice during the questing season was affected by autumnal cooling in the previous season. On the other hand, co-feeding occurrence was also positively associated with roe deer abundance, while mouse density showed a hump-shaped pattern. Individual features of A. flavicollis such as weight and sex also affected co-feeding occurrence with the heaviest (breeding adult) males carrying more co-feeding ticks. We also found that the overall number of co-feeding ticks on mice positively affected TBEv antibody detection in this species the following year. In conclusion, a specific combination of climatic conditions in conjunction with certain rodent and roe deer densities are the principal determinants of the number of co-feeding ticks on A. flavicollis and, consequently, TBEv circulation. These variables can be used to provide an early warning signal for a TBE hazard, thus representing a useful tool for Public Health authorities to prepare action for prevention and control within TBEv circulation areasFile | Dimensione | Formato | |
---|---|---|---|
2019 IJP Tagliapietra.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.