Ηeat and calcium treatments reprogram sweet cherry fruit metabolism during postharvest senescence as evidenced by changes in respiration, amino acid metabolism, sugars, and secondary metabolites shift. Heat and calcium treatments are used to improve postharvest fruit longevity; however, the exact mechanism remains poorly understood. To characterize the impact of these treatments on sweet cherries metabolism, 'Lapins' fruits were treated with heat or CaCl2 solutions and their combination and subsequently were exposed at room temperature, for up to 4 days, defined as senescence period. Single and combined heat and calcium treatments partially delayed fruit senescence, as evidenced by changes in fruit colour darkening, skin penetration force, and respiration activity. Calcium content was noticeably increased by heat in Ca-treated fruit. Several primary metabolites, including amino acids, organic acids, and alcohols, were decreased in response to both treatments, while many soluble sugars and secondary metabolites were increased within 1 day post-treatment. Changes of several metabolites in heat-treated fruits, especially esculetin, peonidin 3-O-glucoside and peonidin 3-O-galactoside, ribose, pyroglutamate, and isorhamnetin-3-O-rutinoside, were detected. The metabolome of fruit exposed to calcium also displayed substantial modulations, particularly in the levels of galactose, glycerate, aspartate, tryptophan, phospharate rutin, and peonidin 3-O-glucoside. The expression of several genes involved in TCA cycle (MDH1, IDH1, OGDH, SUCLA2, and SDH1-1), pectin degradation (ADPG1) as well as secondary (SK1, 4CL1, HCT, and BAN), amino acids (ALDH18A1, ALDH4A1, GS, GAD, GOT2, OPLAH, HSDH, and SDS), and sugar (PDHA1 and DLAT) metabolism were affected by both treatments. Pathway-specific analysis further revealed the regulation of fruit metabolic programming by heat and calcium. This work provides a comprehensive understanding of metabolic regulation in response to heat and calcium during fruit senescence
Michailidis, M.; Karagiannis, E.; Tanou, G.; Sarrou, E.; Evangelia, S.; Ioannis, G.; Karamanoli, K.; Madesis, P.; Martens, S.; Molassiotis, A. (2019). An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. PLANTA, 250 (6): 2009-2022. doi: 10.1007/s00425-019-03272-6 handle: http://hdl.handle.net/10449/52272
An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence
Stefan Martens;
2019-01-01
Abstract
Ηeat and calcium treatments reprogram sweet cherry fruit metabolism during postharvest senescence as evidenced by changes in respiration, amino acid metabolism, sugars, and secondary metabolites shift. Heat and calcium treatments are used to improve postharvest fruit longevity; however, the exact mechanism remains poorly understood. To characterize the impact of these treatments on sweet cherries metabolism, 'Lapins' fruits were treated with heat or CaCl2 solutions and their combination and subsequently were exposed at room temperature, for up to 4 days, defined as senescence period. Single and combined heat and calcium treatments partially delayed fruit senescence, as evidenced by changes in fruit colour darkening, skin penetration force, and respiration activity. Calcium content was noticeably increased by heat in Ca-treated fruit. Several primary metabolites, including amino acids, organic acids, and alcohols, were decreased in response to both treatments, while many soluble sugars and secondary metabolites were increased within 1 day post-treatment. Changes of several metabolites in heat-treated fruits, especially esculetin, peonidin 3-O-glucoside and peonidin 3-O-galactoside, ribose, pyroglutamate, and isorhamnetin-3-O-rutinoside, were detected. The metabolome of fruit exposed to calcium also displayed substantial modulations, particularly in the levels of galactose, glycerate, aspartate, tryptophan, phospharate rutin, and peonidin 3-O-glucoside. The expression of several genes involved in TCA cycle (MDH1, IDH1, OGDH, SUCLA2, and SDH1-1), pectin degradation (ADPG1) as well as secondary (SK1, 4CL1, HCT, and BAN), amino acids (ALDH18A1, ALDH4A1, GS, GAD, GOT2, OPLAH, HSDH, and SDS), and sugar (PDHA1 and DLAT) metabolism were affected by both treatments. Pathway-specific analysis further revealed the regulation of fruit metabolic programming by heat and calcium. This work provides a comprehensive understanding of metabolic regulation in response to heat and calcium during fruit senescenceFile | Dimensione | Formato | |
---|---|---|---|
2019 P Martens.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.