Swimming is of vital importance for aquatic organisms because it determines several aspects of fitness, such as encounter rates with food, predators, and mates. Generally, rotifer swimming speed is measured by manual tracking of the swimming paths filmed in videos. Recently, an open-source package has been developed that integrates different open-source software and allows direct processing and analysis of the swimming paths of moving organisms. Here, we filmed groups of females and males of Keratella cochlearis separately and in a mixed experimental setup. We extracted movement trajectories and swimming speeds and applied the classification method random forest to assign sex to individuals of the mixed setup. Finally, we used advanced statistical methods of movement ecology, namely a hidden Markov model, to investigate swimming states of females and males. When not discriminating swimming states, females swam faster than males, while when discriminating states males swam faster. Specifically, females and males showed two main states of movement with many individuals switching between states resulting in four modes of swimming. We suggest that switching between states is related to predator avoidance. Males of K. cochlearis especially exhibited switching between turning in a restricted area and swimming over longer distances. No mating or other male–female interactions were observed. Our study elucidates the steps necessary for automatic analysis of rotifer trajectories with open-source software. Application of sophisticated software and analytical models will broaden our understanding of zooplankton ecology from the individual to the population level.
Obertegger, U.; Cieplinski, A.; Raat, Z.M.; Colangeli, P. (2018). Switching between swimming states in rotifers –case study Keratella cochlearis. MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY, 51 (3): 159-173. doi: 10.1080/10236244.2018.1503541 handle: http://hdl.handle.net/10449/50288
Switching between swimming states in rotifers –case study Keratella cochlearis
Obertegger, U.
Primo
;
2018-01-01
Abstract
Swimming is of vital importance for aquatic organisms because it determines several aspects of fitness, such as encounter rates with food, predators, and mates. Generally, rotifer swimming speed is measured by manual tracking of the swimming paths filmed in videos. Recently, an open-source package has been developed that integrates different open-source software and allows direct processing and analysis of the swimming paths of moving organisms. Here, we filmed groups of females and males of Keratella cochlearis separately and in a mixed experimental setup. We extracted movement trajectories and swimming speeds and applied the classification method random forest to assign sex to individuals of the mixed setup. Finally, we used advanced statistical methods of movement ecology, namely a hidden Markov model, to investigate swimming states of females and males. When not discriminating swimming states, females swam faster than males, while when discriminating states males swam faster. Specifically, females and males showed two main states of movement with many individuals switching between states resulting in four modes of swimming. We suggest that switching between states is related to predator avoidance. Males of K. cochlearis especially exhibited switching between turning in a restricted area and swimming over longer distances. No mating or other male–female interactions were observed. Our study elucidates the steps necessary for automatic analysis of rotifer trajectories with open-source software. Application of sophisticated software and analytical models will broaden our understanding of zooplankton ecology from the individual to the population level.File | Dimensione | Formato | |
---|---|---|---|
Switching between swimming states in rotifers case study Keratella cochlearis.pdf
solo utenti autorizzati
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.