Phytochelatin synthases (PCS) play pivotal roles in the detoxification of heavy metals and metalloids in plants, however little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundodonax (L.)), a biomass/bioenergy crop with remarkable resistance to cadmium (Cd) and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicates that the three A. donax PCS, namely AdPCS1-3, form a monophyletic clade. AdPCS1-3 genes are expressed at low levels in many A. donax organs and display different levels of Cd-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduces the phenotype of functional PCS genes. Mass-spectrometry analyses confirm that AdPCS1-3 are all functional enzymes, but evidence significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterize the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donaxPCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress

Li, M.; Stragliati, L.; Bellini, E.; Ricci, A.; Saba, A.; Sanità di Toppi, L.; Varotto, C. (2019). Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundodonax (L.). JOURNAL OF EXPERIMENTAL BOTANY, 70 (19): 5391-5405. doi: 10.1093/jxb/erz266 handle: http://hdl.handle.net/10449/50108

Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundodonax (L.)

Li, M.;Varotto, C.
2019-01-01

Abstract

Phytochelatin synthases (PCS) play pivotal roles in the detoxification of heavy metals and metalloids in plants, however little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundodonax (L.)), a biomass/bioenergy crop with remarkable resistance to cadmium (Cd) and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicates that the three A. donax PCS, namely AdPCS1-3, form a monophyletic clade. AdPCS1-3 genes are expressed at low levels in many A. donax organs and display different levels of Cd-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduces the phenotype of functional PCS genes. Mass-spectrometry analyses confirm that AdPCS1-3 are all functional enzymes, but evidence significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterize the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donaxPCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress
Phytochelatin synthase
Gene duplication
Divergence
Subfunctionalization
Cadmium
Giant reed
Phytochelatins
Settore BIO/01 - BOTANICA GENERALE
2019
Li, M.; Stragliati, L.; Bellini, E.; Ricci, A.; Saba, A.; Sanità di Toppi, L.; Varotto, C. (2019). Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundodonax (L.). JOURNAL OF EXPERIMENTAL BOTANY, 70 (19): 5391-5405. doi: 10.1093/jxb/erz266 handle: http://hdl.handle.net/10449/50108
File in questo prodotto:
File Dimensione Formato  
2019 JEB Mingai.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/50108
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact