Background The ability of finding complex associations in large omics datasets, assessing their significance, and prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe estimators, which combine computational efficiency with superior bias/variance properties. An open-source software implementation of these two measures providing a complete procedure to test their significance would be extremely useful. Findings Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a metagenomic dataset is also illustrated. Conclusions We show that MICtools, combining TICe and MICe, is able to highlight associations that would not be captured by conventional strategies

Albanese, D.; Riccadonna, S.; Donati, C.; Franceschi, P. (2018). A practical tool for maximal information coefficient analysis. GIGASCIENCE, 7 (4): 1-8. doi: 10.1093/gigascience/giy032 handle: http://hdl.handle.net/10449/45221

A practical tool for maximal information coefficient analysis

Albanese, D.
Primo
;
Riccadonna, S.;Donati, C.;Franceschi, P.
Ultimo
2018-01-01

Abstract

Background The ability of finding complex associations in large omics datasets, assessing their significance, and prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe estimators, which combine computational efficiency with superior bias/variance properties. An open-source software implementation of these two measures providing a complete procedure to test their significance would be extremely useful. Findings Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a metagenomic dataset is also illustrated. Conclusions We show that MICtools, combining TICe and MICe, is able to highlight associations that would not be captured by conventional strategies
Settore BIO/11 - BIOLOGIA MOLECOLARE
2018
Albanese, D.; Riccadonna, S.; Donati, C.; Franceschi, P. (2018). A practical tool for maximal information coefficient analysis. GIGASCIENCE, 7 (4): 1-8. doi: 10.1093/gigascience/giy032 handle: http://hdl.handle.net/10449/45221
File in questo prodotto:
File Dimensione Formato  
2018 Riccadonna et al.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/45221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 59
social impact