Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50–80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6–15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.
Marcolla, B.; Cescatti, A. (2018). Geometry of the hemispherical radiometric footprint over plant canopies. THEORETICAL AND APPLIED CLIMATOLOGY, 134 (3-4): 981-990. doi: 10.1007/s00704-017-2326-z handle: http://hdl.handle.net/10449/44279
Geometry of the hemispherical radiometric footprint over plant canopies
Marcolla, B.Primo
;
2018-01-01
Abstract
Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50–80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6–15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.File | Dimensione | Formato | |
---|---|---|---|
2018 Marcolla.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.