The Levenberg–Marquardt algorithm is a flexible iterative procedure used to solve non-linear least-squares problems. In this work, we study how a class of possible adaptations of this procedure can be used to solve maximum-likelihood problems when the underlying distributions are in the exponential family. We formally demonstrate a local convergence property and discuss a possible implementation of the penalization involved in this class of algorithms. Applications to real and simulated compositional data show the stability and efficiency of this approach

Giordan, M.; Vaggi, F.; Wehrens, H.R.M.J. (2017). On the maximization of likelihoods belonging to the exponential family using a Levenberg–Marquardt approach. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 87 (5): 895-907. doi: 10.1080/00949655.2016.1238086 handle: http://hdl.handle.net/10449/38016

On the maximization of likelihoods belonging to the exponential family using a Levenberg–Marquardt approach

Giordan, Marco
Primo
;
Vaggi, Federico;Wehrens, Herman Ronald Maria Johan
Ultimo
2017-01-01

Abstract

The Levenberg–Marquardt algorithm is a flexible iterative procedure used to solve non-linear least-squares problems. In this work, we study how a class of possible adaptations of this procedure can be used to solve maximum-likelihood problems when the underlying distributions are in the exponential family. We formally demonstrate a local convergence property and discuss a possible implementation of the penalization involved in this class of algorithms. Applications to real and simulated compositional data show the stability and efficiency of this approach
Aitchison distribution
Compositional data
Dirichlet distribution
Generalized linear models
Natural link
Optimization
Settore MAT/08 - ANALISI NUMERICA
2017
Giordan, M.; Vaggi, F.; Wehrens, H.R.M.J. (2017). On the maximization of likelihoods belonging to the exponential family using a Levenberg–Marquardt approach. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 87 (5): 895-907. doi: 10.1080/00949655.2016.1238086 handle: http://hdl.handle.net/10449/38016
File in questo prodotto:
File Dimensione Formato  
Giordan_JStatComp_2016.pdf

solo utenti autorizzati

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/38016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact