Drift time and distance depend on the ability of the drifting invertebrates to alter their body posture or by swimming, and these behaviours may change according to the local hydraulic environment, resulting in different distances travelled before exiting the drift. Such drift and settlement mediated invertebrate movement determine dispersal processes and ultimately generates distribution patterns within streams. We conducted an experiment in an open-air, artificial flume system directly fed by an Alpine stream, where we disturbed the sediment in the flumes, inducing catastrophic drift in the benthic community, and then assessed the settlement distances of benthic invertebrates. For each flume, we collected drift samples by disturbing the substrate at 1.5 m intervals, at increasing distance from the downstream end, for a total of 7 disturbances and a maximum settling distance of 10 m in each flume, with five replicates (i.e., five flumes) for each disturbance. The disturbances induced a massive catastrophic drift in Ephemeroptera, Plecoptera and Trichoptera, always higher than the behaviourally-occurring basedrift. The Settling Index calculated over the total drift collected at each distance increased with increasing distance, and after 10 m, 90% of the drifting animals had settled. Evenness and taxa richness progressively decrease with increasing settling distance. All drifting taxa were represented mainly by young instars. We used the drift collected at 1 m from the disturbance to standardize the remaining samples, based on the assumption that 1 m is not a distance long enough to allow animals to settle at that water velocity We calculated the percentage of possible drifters which settled by computing a Settling Index for each taxon. The drifting taxa listed by decreasing Settling Index scores were Epeorus sp., Rhithrogena semicolorata, Isoperla spp., Sericostoma spp., Ecdyonurus spp., Nemoura spp., Leuctra spp., Baetis spp., Hydropsyche spp., Rhyacophila spp. We have shown, in accordance with numerous other studies, that entrained EPT nymphs travel only short distances before returning to the substratum, and that the actual distance travelled while drifting and the total time spent in drift varies between species. The results of this study can provide suggestions to assess taxon-specific availability to colonization which generates distribution patterns within streams and, on a smaller scale (i.e., flume simulations), our results can be extrapolated to other studies conducted in artificial flumes, or to support evidences from field studies.
Bruno, M.C.; Maiolini, B.; Carolli, M. (2016). Settling distances of benthic invertebrates in a sediment mobilization simulation in semi-natural flumes. JOURNAL OF LIMNOLOGY, 75 (1): 180-192. doi: 10.4081/jlimnol.2015.1324 handle: http://hdl.handle.net/10449/26861
Settling distances of benthic invertebrates in a sediment mobilization simulation in semi-natural flumes
Bruno, Maria Cristina;Maiolini, Bruno;
2016-01-01
Abstract
Drift time and distance depend on the ability of the drifting invertebrates to alter their body posture or by swimming, and these behaviours may change according to the local hydraulic environment, resulting in different distances travelled before exiting the drift. Such drift and settlement mediated invertebrate movement determine dispersal processes and ultimately generates distribution patterns within streams. We conducted an experiment in an open-air, artificial flume system directly fed by an Alpine stream, where we disturbed the sediment in the flumes, inducing catastrophic drift in the benthic community, and then assessed the settlement distances of benthic invertebrates. For each flume, we collected drift samples by disturbing the substrate at 1.5 m intervals, at increasing distance from the downstream end, for a total of 7 disturbances and a maximum settling distance of 10 m in each flume, with five replicates (i.e., five flumes) for each disturbance. The disturbances induced a massive catastrophic drift in Ephemeroptera, Plecoptera and Trichoptera, always higher than the behaviourally-occurring basedrift. The Settling Index calculated over the total drift collected at each distance increased with increasing distance, and after 10 m, 90% of the drifting animals had settled. Evenness and taxa richness progressively decrease with increasing settling distance. All drifting taxa were represented mainly by young instars. We used the drift collected at 1 m from the disturbance to standardize the remaining samples, based on the assumption that 1 m is not a distance long enough to allow animals to settle at that water velocity We calculated the percentage of possible drifters which settled by computing a Settling Index for each taxon. The drifting taxa listed by decreasing Settling Index scores were Epeorus sp., Rhithrogena semicolorata, Isoperla spp., Sericostoma spp., Ecdyonurus spp., Nemoura spp., Leuctra spp., Baetis spp., Hydropsyche spp., Rhyacophila spp. We have shown, in accordance with numerous other studies, that entrained EPT nymphs travel only short distances before returning to the substratum, and that the actual distance travelled while drifting and the total time spent in drift varies between species. The results of this study can provide suggestions to assess taxon-specific availability to colonization which generates distribution patterns within streams and, on a smaller scale (i.e., flume simulations), our results can be extrapolated to other studies conducted in artificial flumes, or to support evidences from field studies.File | Dimensione | Formato | |
---|---|---|---|
J Limn 2016 Bruno Maiolini carolli.pdf
solo utenti autorizzati
Descrizione: articolo
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
849.93 kB
Formato
Adobe PDF
|
849.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.