Estimates of population density and abundance are essential for the assess- ment of nonhuman primate conservation status, especially in view of increasing threats. We undertook the most extensive systematic primate survey yet of the Udzungwa Mountains of Tanzania, an outstanding region for primate endemism and conservation in Africa. We used distance sampling to survey three arboreal monkey species, including the endangered and endemic Udzungwa red colobus (Procolobus gordonorum). Overall, we encountered 306 primate clusters over 287 km walked along 162 line transects. We found the lowest cluster densities for both red colobus and Angolan colobus (Colobus angolensis; 0.8 clusters/km2) in the least protected forest (Uzungwa Scarp Forest Reserve, US), while we found the highest densities (3.2 and 2.6 clusters/km2 for red colobus; 3.2 and 2.7 clusters/km2for Angolan colobus) in two large and protected forests in the national park. Unexpectedly, Magombera, a small forest surrounded by plantations, had the highest densities of red colobus (5.0 clusters/km2), most likely a saturation effect due to the rapid shrinking of the forest. In contrast, Sykes’ monkey (Cercopithecus mitis monoides/moloneyi) had more similar densities across forests (3.1–6.6 clusters/km2), including US, suggesting greater resilience to disturbance in this species. For the endemic red colobus monkey, we estimated an abundance of 45–50,000 individuals across all forests, representing ca. 80% of the global population. Though this is a relatively high abundance, the increasing threats in some of the Udzungwa forests are of continued concern for the long-term survival of red colobus and other primates in the area
Araldi, A.; Barelli, C.; Hodges, K.; Rovero, F. (2014). Density estimation of the endangered Udzungwa red colobus (Procolobus gordonorum) and other arboreal primates in the Udzungwa Mountains using systematic distance sampling. INTERNATIONAL JOURNAL OF PRIMATOLOGY, 35 (5): 941-956. doi: 10.1007/s10764-014-9772-6 handle: http://hdl.handle.net/10449/24975
Density estimation of the endangered Udzungwa red colobus (Procolobus gordonorum) and other arboreal primates in the Udzungwa Mountains using systematic distance sampling
Barelli, Claudia;
2014-01-01
Abstract
Estimates of population density and abundance are essential for the assess- ment of nonhuman primate conservation status, especially in view of increasing threats. We undertook the most extensive systematic primate survey yet of the Udzungwa Mountains of Tanzania, an outstanding region for primate endemism and conservation in Africa. We used distance sampling to survey three arboreal monkey species, including the endangered and endemic Udzungwa red colobus (Procolobus gordonorum). Overall, we encountered 306 primate clusters over 287 km walked along 162 line transects. We found the lowest cluster densities for both red colobus and Angolan colobus (Colobus angolensis; 0.8 clusters/km2) in the least protected forest (Uzungwa Scarp Forest Reserve, US), while we found the highest densities (3.2 and 2.6 clusters/km2 for red colobus; 3.2 and 2.7 clusters/km2for Angolan colobus) in two large and protected forests in the national park. Unexpectedly, Magombera, a small forest surrounded by plantations, had the highest densities of red colobus (5.0 clusters/km2), most likely a saturation effect due to the rapid shrinking of the forest. In contrast, Sykes’ monkey (Cercopithecus mitis monoides/moloneyi) had more similar densities across forests (3.1–6.6 clusters/km2), including US, suggesting greater resilience to disturbance in this species. For the endemic red colobus monkey, we estimated an abundance of 45–50,000 individuals across all forests, representing ca. 80% of the global population. Though this is a relatively high abundance, the increasing threats in some of the Udzungwa forests are of continued concern for the long-term survival of red colobus and other primates in the areaFile | Dimensione | Formato | |
---|---|---|---|
Araldi et al. 2014_IJP.pdf
non disponibili
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.