Identifying spatial patterns in species diversity represents an essential task to be accounted for when establishing conservation strategies or monitoring programs. Predicting patterns of species richness by a model-based approach has recently been recognised as a significant component of conservation planning. Finding those environmental predictors which are related to these patterns is crucial since they may represent surrogates of biodiversity, indicating in a fast and cheap way the spatial location of biodiversity hotspots and, consequently, where conservation efforts should be addressed. Predictive models based on classical multiple linear regression or generalised linear models crowded the recent ecological literature. However, very often, problems related with spatial autocorrelation in observed data were not adequately considered. Here, a spatially-explicit data-set on birds presence and distribution across the whole Tuscany region was analysed. Species richness was calculated within 1 9 1 km grid cells and 10 environmental predictors (e.g. altitude, habitat diversity and satellite-derived landscape heterogeneity indices) were included in the analysis. Integrating spatial components of variation with predictive ecological factors, i.e. using geostatistical models, a general model of bird species richness was developed and used to obtain predictive regional maps of bird
Bacaro, G.; Santi, E.; Rocchini, D.; Pezzo, F.; Puglisi, L.; Chiarucci, A. (2011). Geostatistical modelling of regional bird species richness: exploring environmental proxies for conservation purpose. BIODIVERSITY AND CONSERVATION, 20 (8): 1677-1694. doi: 10.1007/s10531-011-0054-8 handle: http://hdl.handle.net/10449/20132
Geostatistical modelling of regional bird species richness: exploring environmental proxies for conservation purpose
Rocchini, Duccio;
2011-01-01
Abstract
Identifying spatial patterns in species diversity represents an essential task to be accounted for when establishing conservation strategies or monitoring programs. Predicting patterns of species richness by a model-based approach has recently been recognised as a significant component of conservation planning. Finding those environmental predictors which are related to these patterns is crucial since they may represent surrogates of biodiversity, indicating in a fast and cheap way the spatial location of biodiversity hotspots and, consequently, where conservation efforts should be addressed. Predictive models based on classical multiple linear regression or generalised linear models crowded the recent ecological literature. However, very often, problems related with spatial autocorrelation in observed data were not adequately considered. Here, a spatially-explicit data-set on birds presence and distribution across the whole Tuscany region was analysed. Species richness was calculated within 1 9 1 km grid cells and 10 environmental predictors (e.g. altitude, habitat diversity and satellite-derived landscape heterogeneity indices) were included in the analysis. Integrating spatial components of variation with predictive ecological factors, i.e. using geostatistical models, a general model of bird species richness was developed and used to obtain predictive regional maps of birdFile | Dimensione | Formato | |
---|---|---|---|
2011 B&C Bacaro et al.pdf
non disponibili
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
660.29 kB
Formato
Adobe PDF
|
660.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.