Liquid Chromatography-Mass Spectrometry (LC-MS) untargeted experiments require complex bioinformatic strategies to extract information from the experimental data. Here we discuss the "data preprocessing," the set of procedures performed on the raw data to produce a data matrix which will be the starting point for the subsequent statistical analysis. Data preprocessing is a crucial step on the path to knowledge extraction, which should be carefully controlled and optimized in order to maximize the output of any untargeted metabolomics investigation.

Garcia-Aloy, M.; Rainer, J.; Franceschi, P. (2025). Data Treatment for LC-MS Untargeted Analysis. In: Metabolic Profiling: methods and protocols (editor(s) Deda, O.; Gika, H.G.; Wilson, I.D.). (METHODS IN MOLECULAR BIOLOGY): 91-108. ISBN: 9781071643334 doi: 10.1007/978-1-0716-4334-1_5. handle: https://hdl.handle.net/10449/88475

Data Treatment for LC-MS Untargeted Analysis

Garcia-Aloy, Mar
Primo
;
Franceschi, Pietro
Ultimo
2025-01-01

Abstract

Liquid Chromatography-Mass Spectrometry (LC-MS) untargeted experiments require complex bioinformatic strategies to extract information from the experimental data. Here we discuss the "data preprocessing," the set of procedures performed on the raw data to produce a data matrix which will be the starting point for the subsequent statistical analysis. Data preprocessing is a crucial step on the path to knowledge extraction, which should be carefully controlled and optimized in order to maximize the output of any untargeted metabolomics investigation.
Metadata
Missing values
Peak picking
Preprocessing
Quality check
Retention time correction
Settore CHEM-01/A - Chimica analitica
2025
9781071643334
Garcia-Aloy, M.; Rainer, J.; Franceschi, P. (2025). Data Treatment for LC-MS Untargeted Analysis. In: Metabolic Profiling: methods and protocols (editor(s) Deda, O.; Gika, H.G.; Wilson, I.D.). (METHODS IN MOLECULAR BIOLOGY): 91-108. ISBN: 9781071643334 doi: 10.1007/978-1-0716-4334-1_5. handle: https://hdl.handle.net/10449/88475
File in questo prodotto:
File Dimensione Formato  
2025 Garcia Aloy .pdf

solo utenti autorizzati

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 13.19 MB
Formato Adobe PDF
13.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10449/88475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact