Airborne remote sensing is increasingly recognized as an outstanding data source for high-fidelity mapping of carbon stocks at regional scales. A tree-centric approach to carbon mapping is developed, based on identifying individual tree crowns (ITCs) from the LiDAR point cloud and identifying species from airborne hyperspectral data by machine learning. Using examples from coniferous forest in the Italian Alps, deciduous woodland in Britain, and lowland tropical forest in Borneo, the tree-centric approach is shown to deliver precise estimates of individual tree biomass and forest stocks. ITC delineation approaches based on canopy height models fail to detect subcanopy trees, and a small correction needs to be made to accommodate these in carbon maps. However, new graph cut approaches using the entire point cloud can detect individuals beneath the main canopy, provided the LiDAR point cloud is sufficiently dense. An advantage of the tree-centric approach over existing plot-level methods is that it is founded on the same principles as field-based inventory approaches, making it intuitive and transparent to use.
Coomes, D..A.; Dalponte, M.; Lee, J.; Schönlieb, C.; Cai, X. (2015). Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. In: RSPSoc, NCEO and CEOI-ST Joint Annual Conference 2015, Southampton, UK, 8-11 September 2015. handle: http://hdl.handle.net/10449/26382
Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
Dalponte, Michele;
2015-01-01
Abstract
Airborne remote sensing is increasingly recognized as an outstanding data source for high-fidelity mapping of carbon stocks at regional scales. A tree-centric approach to carbon mapping is developed, based on identifying individual tree crowns (ITCs) from the LiDAR point cloud and identifying species from airborne hyperspectral data by machine learning. Using examples from coniferous forest in the Italian Alps, deciduous woodland in Britain, and lowland tropical forest in Borneo, the tree-centric approach is shown to deliver precise estimates of individual tree biomass and forest stocks. ITC delineation approaches based on canopy height models fail to detect subcanopy trees, and a small correction needs to be made to accommodate these in carbon maps. However, new graph cut approaches using the entire point cloud can detect individuals beneath the main canopy, provided the LiDAR point cloud is sufficiently dense. An advantage of the tree-centric approach over existing plot-level methods is that it is founded on the same principles as field-based inventory approaches, making it intuitive and transparent to use.File | Dimensione | Formato | |
---|---|---|---|
2015 Dalponte.pdf
accesso aperto
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
16.41 kB
Formato
Adobe PDF
|
16.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.