Mating behaviour in spotted wing species suggests a modular model of vibratory communication in *Drosophila*

Omar ROTA STABELLI, Valerio MAZZONI

Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy

Like in many other insects, Drosophila males produce acoustic signals to facilitate female’s mating acceptance: some of these signals are clearly substrate-borne and are produced by abdominal vibrations. Compared to *D. melanogaster*, individuals from the *suzukii* subgroup are further characterised by the emission of a specific signal, called “toot”, which is characterized by harmonic frequency structure and is associated with wing movements. We tested whether the “toot” signal is a specific characteristic of the *D. suzukii* group and if it co-evolved with the presence of spots on wings, by studying the courtship strategy and associated acoustic signals in spotted (*D. suzukii, D. subpulchrella, D. biarmipes, D. elegans*) and unspotted wings species (*D. takahashi, D. melanogaster, D. ananassae*).

We show that only spotted wings species, including *D. elegans* which does not belong to the *suzukii* subgroup, are capable of producing a toot or tool-like signal: with the exception of *D. biarmipes*, spotted wing males combine wing exposure with sound emission so that visual and acoustic cues work together to increase female acceptance. We also show that the “quivering” signal is a recent acquisition of the melanogaster group, while other type of signals such as “sine” and “pulsed” are scattered along the *Drosophila* phylogeny.

Our results advance our understanding of *Drosophila* signalling and make us hypothesize that some signals including the “toot” might be ancient characters that have been secondary lost in some lineages; alternatively these signals could peculiar cases of convergent evolution. We propose a modular model of *Drosophila* vibratory signal based on the recruitment of a species-specific set of signals taken from a collection of at least 5 main signals.