PhD Conference

UFT Seminar Centre, Tulln, Austria
13th October, 2015
P16: Identification of volatile organic compounds in different grapevine genotypes after inoculation with *Plasmopara viticola*

Valentina Lazazzara\(^1,2\), Alexandra Simader\(^1\), Christoph Bueschl\(^1\), Alexandra Parich\(^1\), Michele Perazzolli\(^2\) and Rainer Schuhmacher\(^1\)

5. Foundation Edmund Mach, Research and Innovation Centre, Sustainable Ecosystems and Bioresources Department (DASB), Via E. Mach, 1 - 38010 S. Michele all'Adige (TN), Italy
6. University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Center for Analytical Chemistry, Konrad-Lorenz-Strasse 20, A-3430 Tulln, Austria; valentina.lazazzara@boku.ac.at

The grapevine *Vitis vinifera* cv Pinot noir is susceptible to several pathogens including *Plasmopara viticola* that is the causal agent of downy mildew [1]. Hybrids of *V. berlandieri* and *V. riparia* (SO4 and Kober 5BB) and hybrids of *Muscadinia rotundifolia* and *V. vinifera* (BC4) and others such as Solaris are resistant or tolerant to downy mildew. It has been demonstrated recently [2] that resistant in vitro hybrids SO4 and Kober 5BB emit volatile organic compounds (VOCs) in response to *P. viticola* infection. In particular, the most interesting class of VOCs constitutes terpenoids (mono- and sesquiterpenes) emitted by the resistant cultivars, whereas for Pinot noir no terpenes have been detected under the tested conditions.

In the present study we have used gas chromatography coupled with mass spectrometry (GC-MS) to study in more detail the chemical identity of the compounds produced by selected plants of the five genotypes Pinot noir, Kober 5BB, SO4, BC4 and Solaris. All the genotypes were cultured in the greenhouse and leaves were harvested immediately (0 dpi) and six (6 dpi) days after the inoculation with *P. viticola*. All samples were immediately frozen and homogenized under cooled conditions. VOCs were extracted by using solid phase microextraction (SPME) and analyzed by GC-MS. Mass spectral deconvolution and annotation / identification of volatile compounds was based on comparision of mass spectra and retention indices with reference values and performed by Metabolite Detector software [3].

Preliminary results showed increased levels compared to day zero of sesquiterpenes in resistant cultivars six days after inoculation, demonstrating that terpenes could play an important role in plant resistance against downy mildew in resistant genotypes.