The 1st Isotope Ratio MS DAY

May 9-11, 2016
Fondazione Edmund Mach

S. Michele all’Adige (Trento, Italy)
OR4 - Using GC/c/IRMS analysis to improve food traceability

Mauro Paolini1,2, Federica Camin1

1Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all’Adige (TN), Italy
2Department of Food Science, University of Udine, Via Sondrio 2A, 33100 Udine, Italy
mauro.paolini@fmach.it

Bulk analysis of the stable isotope ratios of carbon, nitrogen, sulphur, oxygen and hydrogen in food samples is a common tool for assessing origin and/or food fraud. Many studies have shown that bulk isotope analysis of agricultural products is able to distinguish between organic and conventional agriculture systems and to separate the geographical areas from which food originates.

In the last few years methods aimed at compound specific stable isotope analysis using gas chromatography-isotope ratio mass spectrometry (GC/IRMS) have been developed in many research areas. The ability to separate compounds and then determine the isotopic ratio of each of them represents a significant advance in isotopic analysis, obtaining a more in-depth understanding.

In different studies we proved the accuracy of the information obtained by applying compound specific analysis in comparison to bulk analysis. Compound groups such as amino acids and fatty acids can help to provide further detailed information on physiological pathways and local conditions (soil and water availability) and can therefore add further information.

δ15N and δ13C determination of single amino acids after N-acetylisopropyl derivatisation was used to discriminate between conventional and organic wheat grown using synthetic nitrogen fertilisers and animal manure or green manure from nitrogen-fixing legumes respectively. The results demonstrated that the δ13C of glutamic acid and glutamine in particular, but also the combination of the δ15N and δ13C of 10 amino acids (alanine, aspartate, glutamate, glycine, isoleucine, leucine, phenylalanine, proline, threonine and valine), can significantly improve discrimination between conventional and organic wheat (Paolini et al., 2015). The δ15N of wine proline has been shown to be an additional isotopic marker for tracing the geographical origin of wine. Indeed, measurement of the variability of nitrogen isotopic values along the wine production chain has shown that the δ15N value of proline is very close to the δ15N value of the growing soil (Paolini et al., 2016).

Finally the δ13C of palmitic, stearic, oleic and linoleic acids after ethanol transesterification of oil triglycerides, considerably improved geographical differentiation between European and non-European extra-virgin olive oil.

References