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Abstract
When modeling coexpression networks from high-throughput time course data, Pearson

Correlation Coefficient (PCC) is one of the most effective and popular similarity functions.

However, its reliability is limited since it cannot capture non-linear interactions and time

shifts. Here we propose to overcome these two issues by employing a novel similarity func-

tion, Dynamic TimeWarping Maximal Information Coefficient (DTW-MIC), combining a

measure taking care of functional interactions of signals (MIC) and a measure identifying

time lag (DTW). By using the Hamming-Ipsen-Mikhailov (HIM) metric to quantify network dif-

ferences, the effectiveness of the DTW-MIC approach is demonstrated on a set of four syn-

thetic and one transcriptomic datasets, also in comparison to TimeDelay ARACNE and

Transfer Entropy.

Introduction
Inferring a biological graph (e.g., a Gene Regulatory Network) from high-throughput longitu-
dinal measurements of its nodes is one of the critical challenges in computational biology, and
several are the proposed solutions to this still unanswered question [1–3]. Although the prob-
lem is strongly non-linear, a simple but widespread solution such as the coexpression networks
via correlation measures provides a good approximation [4–8], even outperforming more com-
plex approaches [4, 9–11]. This follows from the observation that functionally related genes
share similar expression patterns [12], implying that coexpression and functional relationships
are correlated [13–15]. Pearson Correlation Coefficient (PCC) is the most used similarity mea-
sure [16–18], although alternative correlation functions can be also employed [19–21]. How-
ever, PCC lacks sensitivity in case of non-linear relations [22] and time shift between signals
[23–25], thus the reliability of a coexpression network would benefit from a measure taking
care of these characteristics.

Diverse inference methods have been proposed to include more flexibility and, more gener-
ally, to build networks that can capture higher order interactions better than coexpression.
Recent reviews [7, 26–34] provide a map of the landscape on network inference to date, while
comparison studies and competitions (notably the DREAM challenges series) have tried to
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detect the optimal solution. However, the widespread range of application of network inference
prevents from individuating an elective algorithm, with each novel method claiming advantage
in a particular context, often with overoptimistic results [35]. The integration of the predictions
from individual methods has thus been proposed to complement advantages while limiting
flaws [35–38], however with limited operability, due for instance to the early stage of the
ensemble techniques in this area [39, 40] and to the heterogeneity of the challenged tasks [41].
In terms of mathematical techniques, there is a wide choice of approaches alternative to corre-
lation, including mutual information (MI) evaluation, partial correlation estimation, Bayesian
network, statistical physics approaches to dynamic systems. In particular, ARACNE [42] for
MI andWGCNA [16, 17] for correlation (and the algorithms derived from these, see Methods
section) stand as reference methods [4, 9, 28]. Similarity measures specifically targeted to longi-
tudinal data have also entered the game [43], either as variation of existing general purpose
methods, or just transferred from other domains such as signal processing, finance, climatol-
ogy. Recent reviews on similarity functions for time series list a wide diversity of mathematical
strategies, including e.g., cross-correlation, Hidden Markov Models, edit distance, Newey–
West estimator, spectral distances [44–48].

In particular, two measures proved to be quite effective in tackling the two issues of non-lin-
earity and time-shift: the Maximal Information Coefficient (MIC) [49] and the Dynamic Time
Warping (DTW) [50]. MIC is a MI-based association measure aimed at detecting functional
(linear and non-linear) dependencies between two variables [49, 51–53], part of the family of
Maximal Information-based Nonparametric Exploration statistics. DTW is a classical measure
evaluating the distance between two temporal sequences possibly varying in time or speed,
applied to temporal sequences of video, audio, graphics and omics data [50, 54–57]. Opera-
tively, DTW works by detecting the optimal mapping between the sequences via Dynamic Pro-
gramming, to obtain an alignment; by backtracking, DTW provides a natural geometric
representation of the time shift between two sequences.

As an alternative to PCC, here we propose to infer coexpression networks from omics time
series data by a similarity measure integrating MIC with DTW.We define the DTW-MIC func-
tion as the root mean square of MIC and the similarity measure naturally induced by DTW.We
quantify the performance of the DTW-MIC approach within a differential network framework
based on the Hamming-Ipsen-Mikhailov (HIM) distance [58, 59], thus obtaining a quantifica-
tion of the difference between the inferred network and the true network, whenever the true ref-
erence network is available. In particular, we evaluate DTW-MIC on four synthetic datasets
generated by GeneNetWeaver (GNW) [60] following the guidelines of the DREAMChallenge
[61]. Further, we apply the method on a gene expression reference dataset on T-cell activation in
response to phorbol 12-myristate 13-acetate (PMA) and ionomycin treatment [62], showing a
consistent improvement over PCC in network reconstruction. In addition to comparing
DTW-MIC with the baseline reference PCC in the WGCNA framework, we evaluate the novel
approach with respect to two algorithms differently estimating MI. We consider Transfer
Entropy [63, 64], where the MI is integrated by the dynamics of information transport, and
TimeDelay ARACNE [65]. The latter assumes that the underlying probabilistic model of the
expression profiles is a stationary RandomMarkov Field and it outperforms the original ARA-
CNE on longitudinal data. On average, the nets inferred by DTW-MIC were closer to the true
network than the graphs inferred by both Transfer Entropy and TimeDelay ARACNE.

As a bioinformatics resource, we provide an implementation of the DTW-MIC measure,
other association and inference functions, and the HIM distance within ReNette, the Open
Source web framework for differential network analysis [66]. ReNette and its companion R
package nettools [58] are available on the CRAN archive (http://cran.r-project.org) and on the
GitHub repository https://github.com/MPBA/nettools.git.
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Methods

Time series similarity measures
Maximal Information Coefficient. The Maximal Information Coefficient (MIC) measure

is a member of the Maximal Information-based Nonparametric Exploration (MINE) family of
statistics, introduced for the exploration of two-variable relationships in multidimensional data
sets [49, 51, 53]. Operatively, the MIC value is obtained by building several grids at different
resolutions on the scatterplot of the two variables, then computing the largest possible MI
achievable over all grids and finally normalizing to the [0, 1] range, where larger values corre-
spond to higher similarity. The two distinctive features of MIC are generality, i.e., the ability of
capturing variable relationships of different nature, and equitability, that is the property of
penalizing similar levels of noise in the same way, regardless of the nature of the relation
between variables.

Since its introduction in 2011, a debate arose in the scientific community regarding statisti-
cal flaws of MINE [67–75], such as tendency to overestimate MI and to generate false positives:
superiority over MIC has also been claimed for alternative measures, such as Brownian dis-
tance correlation [76] and biweight midcorrelation [9]. Alternative statistics stemmed from the
MIC definition such as Copula Correlation [77], GeneralizedMIC [78], Multivariate Maximal
Correlation Analysis [79], Mutual Information based Dependence Index [80] and ImprovedAl-
gorithmMIC [81]. Altogether they do not match the popularity gained by the original MIC sta-
tistic, also in the computational biology community, e.g., in the analysis and inference of
various kinds of biological networks. MIC has been coupled to the Context Likelihood of Relat-
edness (CLR) [82] for network inference from steady state data [83, 84]; MIC has been used for
the same purpose in integration with the Interaction Component Model [85]. MIC has been
used as an association measure for omics and other data in several systems biology studies, for
a partial list, see [86–97]; several studies have specifically considered control of false positive
ratio [98–100]. MIC (and the other MINE statistics) can be computed in R [101] by using the
minerva package [52].

Example E1 To illustrate the difference between PCC and MIC in detecting non-linear rela-
tionships between two variables, we introduce a simple synthetic example E1. Consider the fol-
lowing five time series with 100 time points {ti = i : 1� i� 100}:

AðiÞ ¼ 0:01i

BðiÞ ¼ log 100i

CðiÞ ¼ 0:01iþ εð0:002iÞ; εðzÞ 2 Uð�z; zÞ
DðiÞ ¼ 0:5 cos log iþ 0:65

EðiÞ ¼
(
0 for 50 � i � 70

DðiÞ � 0:15 otherwise;

where Uða; bÞ is the uniform distribution with extremes a< b. While A(i) is just 1/100–th of
the identity map, B(i) is a logarithmic map, C(i) is obtained from A(i) by adding a 20% level of
uniform noise, D(i) is a more complex non-linear map merging a trigonometric and a logarith-
mic relation and, finally, E(i) is obtained from D(i) by a vertical offset and then flattening to
zero all the values in the time interval [50, 70]. In Fig 1 the plot of the five time series A–E is dis-
played together with the PCC and MIC values for all pairs of sequences. MIC is able to capture
the functional relationship linking all pairs of time series, even in presence of a moderate level
of noise: all MIC values are larger than 0.72, and in six cases out of ten MIC attains the upper
bound 1. On the other hand, PCC is close to one only when evaluating the pairs (A, B), (A, C),
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(B, C) and (D, E), while all the remaining six cases display a correlation score smaller than 0.33,
confirming that PCC is ineffective as a similarity measure for complex longitudinal data. As a
relevant example, note that B(i) has a strong functional dependence from D(i) and E(i)
although the shape of the corresponding curves are hugely different: this non-linear behaviour
is well captured by MIC, with similarity value 1 to both (B, D) and (B, E), while the correspond-
ing values for PCC are negative.

Dynamic TimeWarping. Dynamic Time Warping (DTW) [54, 55] is a measure of dis-
tance between two sequences that takes care of time shifts. The DTW algorithm finds an opti-
mal alignment between the two series by a non-linear warping of the time axes, also providing
a measure of their dissimilarity. By construction, the similarity between curve shapes is a more
important factor in DTW rather than the pointwise distance between the time series values.
For a comprehensive reference, the reader is referred to [102].

Several variations to the original DTW algorithm have been proposed, first to overcome
technical drawbacks and then to target specific data structures. Within the most important
alternatives, we list DerivativeDTW [103], IterativeDTW [104], FastDTW [105], Weight-
edDTW [106], OnlineDTW [107], NearestNeighborDTW [108] and ComplexityInvar-
iantDTW [109], possibily the most promising. Although the DTW alternatives often perform
better in specific cases, for the original DTW robustness [106, 107] and effectiveness in a gen-
eral scenario [110–112] are acknowledged. In particular, alternative measures to DTW specifi-
cally tailored to network inference do exist [113], but they have not been as extensively tested
as DTW.

Fig 1. Example E1. PCC versus MIC in a synthetic example with five time series A–E on 100 time points (left) and the corresponding PCC values (right panel,
top-left triangle) and MIC values (right panel, bottom-left triangle) for all pairs of time series.

doi:10.1371/journal.pone.0152648.g001
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To obtain a similarity measure DTWs from the distance DTW we use the function DTWs =
1/(1 + DTWd), where DTWd is the normalized distance between two series, as computed in the
R package dtw [114].

Example E2 In what follows, a synthetic example E2 is used to highlight the difference
between DTW and PCC for increasing time shift, with and without a moderate noise level. This
example mimics a common situation in omics data, when the activation of a gene induces a
delayed activation of an inactive gene, with a similar expression level curve, affected by a certain
amount of noise. Consider the following time series with 100 time points {ti = i : 1� i� 100}:

rðiÞ ¼ 1
10

e�
2
25i

ffiffiffi
i3

p
sin

3
20

i

� �
;

whose graph is displayed in the top-left panel (yellow background) of Fig 2. Moreover, define
the following family of time series originated by r(i), for εðzÞ 2 Uð�z; zÞ:

r½k�s ðiÞ ¼
(
εðkÞ for i � s

rði� sÞ þ εðk � rði� sÞÞ for s < i � 100:

In this notation, r½0�0 ðiÞ ¼ rðiÞ. Finally, define the two functions

P : N� R
þ
0 ! ½�1; 1� D : N� R

þ
0 ! ½0; 1�

ðs; kÞ 7!PCCðr½k�s ; rÞ ðs; kÞ 7!DTWsðr½k�s ; rÞ

In Fig 2 the plots of the 15 time series fr½k�s ðiÞ: s ¼ 0; 5; 10; 20; 40; k ¼ 0; 1; 2g are shown,
together with the corresponding values of P(s, k) (italic) and D(s, k) (boldface). Moreover, in
the top panel of Fig 3 the curves P(s, k) (squares) and D(s, k) (dots) are displayed for k = 0, 1, 2
(in black, blue and red respectively) versus the time shift s ranging from 0 to 40. The example
shows that DTW can model the dependence between r½k�s ðiÞ and r(i), even for large time shift s
and high noise level k. In particular, as a function of the time shift s, the value for DTWmono-
tonically decreases from 1 to 0.959, 0.804, 0.670 for k = 0, 1, 2 respectively, and D(s, 0)> D(s,
1)> D(s, 2) consistently along the whole range 0� s� 40. On the other hand, PCC rapidly
decreases to very low correlation level even for small time shifts s> 5, with PCC< 0.3 for all
values s> 7. Furthermore, the PCC value does not change monotonically on increasing noise:
in fact, the curves P(s, k) mutually intersecate. Finally, to assess the significance of the values D

(s, k), we compare it against the null distribution DM
m ¼ fDTWsðZj; ZjþNÞg, where the set fZj:

Zj 2 ½m;M�100; 1 � j � 2N; ZjðiÞ 2 Uðm;MÞ; 1 � i � 100g consists of 2N random vectors ηj
on 100 time points with values randomly and uniformly sampled between two positive real val-
uesm<M. In particular, as parameters here we use N = 1000 and, given a noise level k, we set

m ¼ min
0�s�40

1�i�100

r½k�s ðiÞ andM ¼ max
0�s�40

1�i�100

r½k�s ðiÞ. For all the three cases k = 0, 1, 2, the distribution of

the set DM
m is Gaussian shaped, and the 95% Student bootstrap confidence intervals around the

mean are quite narrow, namely (0.7429, 0.7441), (0.6570, 0.6584) and (0.5115, 0.5130) for

k = 0, 1, 2 respectively. Thus the mean values DM
m , i.e., 0.7435 (k = 0), 0.6577 (k = 1) and 0.5121

(k = 2), can be used as significance thresholds, as shown in the bottom panel of Fig 3: in all the
three cases, for the whole range 0� s� 40, the curve P(s, k) lies above the corresponding sig-
nificance threshold value.
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Fig 2. Example E2. PCC and DTWs versus the reference series r for the 15 time series r ½k�s ðiÞ with s = 0, 5, 10, 20, 40 and k = 0, 1, 2. Each row corresponds to
a different value of S, indicated by the figure in the top right corner of the plot in the first column. Each column corresponds to a different value of k: 0 on the
left, with black curves, 1 in the centre, with blue curves and 2 on the right, with red curves. The plot in the top left panel with yellow background is the
reference time series r ½0�0 ¼ r. Under each panel, the corresponding values are reported for P(s, k) (italic) and D(s, k) (boldface).

doi:10.1371/journal.pone.0152648.g002
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Fig 3. Example E2. PCC and DTWs versus the reference series r for the fr ½k�s g with k = 0, 1, 2 and the time shift s ranging between 0 and 40. Squares
correspond to P(s, k), while circles and solid lines indicate D(s, k); the different noise levels k = 0, 1, 2 are denoted by curves in black, blue and red
respectively. The dashed lines in the bottom panel indicate the no-information value for DTWs based on the null model described in Example E2.

doi:10.1371/journal.pone.0152648.g003
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DTW-MIC. We define DTW-MIC as a novel measure of similarity between two time
series by considering the root mean square of MIC and DTWs:

DTW�MICðT1;T2Þ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTWsðT1;T2Þ2 þMICðT1;T2Þ2

q
:

By definition, DTW-MIC joins the contributions of both MIC and DTWs, thus taking care of
time shifts and non-linear functional relations. This characteristic makes DTW-MIC more
effective than PCC, but also of MIC and DTW considered separately, as demonstrated by the
following example E3 on synthetic data.

Example E3 Consider a set g of three genes g1, g2 and g3 and the corresponding time series
of expression G ¼ fG1;G2;G3g on 100 time points 1� i� 100 defined as follows:

G1ðiÞ ¼
(
2 for 1 � i � 30

2þ i�30
20

sin ði�30Þp
70

for 31 � i � 100

G2ðiÞ ¼ 3þ 2 sin
ip
100

G3ðiÞ ¼ 2þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� 110þ sin 3ðG2ðiÞ � 3Þ
����

s
:

The graphs of the functions in G are plotted in the top panel of Fig 4, while in the bottom panel
we list all values {M(i, j) :M 2 {PCC, MIC, DTWs, DTW-MIC} and 1� i< j� 3}, computing
for each similarity measureM, the corresponding coexpression network on the gene set g. All
the three pairs of series have a very low correlation (PCC� 0.23), but DTW-MIC is still able to
capture the existing relation between them (DTW-MIC� 0.5), even when these relations are
of different nature. In fact, G2 and G3 have a low DTW similarity, but a high MIC correlation,
while the opposite happens for G1 and G3. Finally, the pair (G1, G2) has moderate values for
both MIC and DTW. In all three cases the resulting DTW-MIC value is above the significance
threshold computed from the null model described in the previous section, which is 0.52 for
(G1, G2), 0.29 for (G2, G3) and 0.39 for (G1, G3).

Network Analysis
Co-expression networks. An effective method for simultaneously analysing the mutual

relations among a group of interacting agents is provided by graph theory, consisting in (i)
building a complex network that has the agents as nodes and (ii) inferring the (weight of the)
edges connecting the nodes by applying a similarity measure between the signals of the agents.
A typical example in omics science is represented by gene networks: the nodes are the genes
and an edge between two genes is weighted by the similarity between their expression levels in
a time window as read by microarray or sequencing technologies. In case of a binary network,
the edge is declared to exist only if the similarity value lies above a chosen threshold. These
graphs are called coexpression networks, having as most popular model the Weighted Gene
Co-expression Network Analysis (WGCNA) [16–18], where the adopted similarity is the abso-
lute PCC, soft thresholded by a power function. In detail, given N genes and their expressions
g1, . . . , gn, the resulting WGCNA network is described by the adjacency matrix A whose entries
are defined as

aij ¼ Mðgi; gjÞb; ð1Þ

DTW-MIC Coexpression Networks from Time-Course Data
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Fig 4. Example E3. Plots (top) and PCC, MIC, DTWs and DTW-MIC weighted coexpression networks (bottom) for the set G of the three time seriesG1,G2

andG3 (in red, blue and green respectively). Arc width is proportional to edge weight.

doi:10.1371/journal.pone.0152648.g004
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forM = |PCC| and β a positive power, usually tuned according to additional constraints,
such as the scale-freeness [115, 116] of the network; the default choice in the WGCNA R/Bio-
conductor package [17] is β = 6.

Comparison methods. In the Results section we will use the WGNCA framework with
the novel DTW-MIC as theMmeasure in Eq (1), comparing the obtained networks with those
inferred by the classical choiceM = |PCC|. Apart fromWGCNA, we will use two more algo-
rithms for comparison purposes to DTW-MIC.

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [42] is the ref-
erence method implementing reconstruction of network based on estimation of MI, together
with Context Likelihood of Relatedness (CLR) [82], Maximum Relevance/Minimum Redun-
dancy (MRNET) [117] and Relevance Network (RELNET) [118]. Although challenged in per-
formance by novel MI approaches [80, 119–121], ARACNE still remains a valuable baseline
when assessing the effectiveness of a novel method, and, for instance, tends to outperform
approaches based on partial correlation [4, 95, 122]. However, as declared by the authors, the
aim of ARACNE is the detection of transcriptional interactions with high confidence rather
than the inference of all transcriptional interactions in a genetic network. Moreover, its poten-
tial goes beyond the coexpression assessment, making it suitable to address a wider range of
network deconvolution problems. Since ARACNE is not designed to work on longitudinal
data, as comparison method we select Time-Delay ARACNE [65], which allows the application
of the ARACNE algorithm to time-course expression profiles. In detail, time-delayed depen-
dencies between profiles are assessed by assuming a stationary Markov Random Field as the
underlying probabilistic model, and then extracting a MI measure of dependence between the
two genes at different time delay. Operatively, we will use Time-Delay ARACNE in its R/Bio-
conductor implementation provided by the TD-ARACNE package.

The second algorithm, Transfer Entropy [63, 64], although still based on MI estimation, has
a different origin: it comes from statistical physics and it is aimed at quantifying the statistical
coherence between systems evolving in time. In detail, this alternative information theoretic
measure integrates the MI properties with the dynamics of information transport expressed in
terms of Kullback entropy. Unlike DTW and TimeDelay-ARACNE, Transfer Entropy does not
introduce any time delay in the observation, but rather it generalizes the entropy rate to two
signals by measuring the deviation from independence. Hereafter we will test this measure as
implemented in the TransferEntropy R package within the WGCNA framework with β = 6.
Since Transfer Entropy is not symmetric, we follow the same strategy adopted by the authors
of MIC: the weight of an unsigned interaction between the signals of two genes X, Y is the max-
imum of the intensity of the two directed interactions X! Y, Y! X. The embedding dimen-
sion and the neighbor used by the Kraskov estimator are set to 3 and 1, respectively, as shown
in the documentation of the R package. In some cases, the considered dataset does not satisfy
the assumptions of the Kraskov estimator, thus Transfer Entropy cannot be computed. As sug-
gested by the R package documentation, a small Gaussian noise needs to be added to the data
before computing Transfer Entropy.

Hamming-Ipsen-Mikhailov distance. For the quantitative assessment of the difference
between two networks sharing the same nodes a graph distance is required. Among all metrics
described in the literature, we choose the Hamming-Ipsen-Mikhailov (HIM) distance for its
consistency and robustness [59, 123]. The HIM distance for network comparison is defined as
the product metric of the Hamming distance H [124, 125] and the Ipsen-Mikhailov distance

IM [126], normalized by the factor
ffiffiffi
2

p
to set its upper bound to 1:

HIMðN1;N2Þ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðN1;N2Þ2 þ IMðN1;N2Þ2

q
;
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for N1, N2 two undirected (possibly weighted) networks. The drawback of edit distances (such
as H) is their locality, as they focus only on the network parts that are different in terms of pres-
ence or absence of matching links [123]. Spectral distances like IM are global, since they take
into account the whole graph structure, but they cannot distinguish isomorphic or isospectral
graphs, which can correspond to quite different conditions within the biological context. The
HIM distance is a solution tackling both issues: details on HIM and its two components H and
IM together with a few application examples are given in [58, 59]. In particular, HIM distance
can be computed also for directed networks by using an alternative description of the graph
topology. Values of HIM distance range from 0 (when comparing identical networks) to 1,
attained only when comparing the full and the empty network.

Example E4 In the example E4 shown in Fig 5, we selected four non-isospectral networks on
four vertices, namely the empty graph E, the full graph F, a network with 1 edge A and a net-
work with 4 edges including a 3-cycle, B. For these 4 graphs, the mutual H, IM and HIM dis-
tances are computed and reported as points on the H × IM plane, where each distance HIM(P,
Q) between two graphs P and Q is represented by a point of coordinates R = (H(P, Q), IM(P,
Q)) and its HIM value is the length of the segment connecting R to the origin (0, 0), divided byffiffiffi
2

p
. The visualization in the H × IM plane allows the relative comparison of the values of the

two components of the distance: for instance, the Hamming distance between A and E is half
the Hamming distance between B and F (1/6 vs. 1/3), but the IM component is much larger for
the former pair, yielding two quite similar values for HIM.

Results
In this section we apply the novel DTW-MIC similarity measure to two case studies in compu-
tational biology.

Each dataset includes a networkN of connections between n genes, together with the corre-
sponding time series describing, for each gene, the dynamics of the expression level. Our strat-
egy is the same in both applications and it includes two steps: first, the reconstruction of the
network in the WGCNA framework in the classical approach via PCC and through DTW-MIC
and the two additional benchmark measures TimeDelay ARACNE and Transfer Entropy, and
then the evaluation of the HIM distance of the reconstructed networks from the true graph.

In detail, in the first application a suite of three synthetic gene network/time-course datasets
is generated, inspired by real biological systems. The second task has the same goal, but expres-
sion level measurements come from a publicly available microarray dataset from a human
cohort and the true network is experimentally unknown; however, a reasonable approximation
of the network has been inferred by GeneNet [127, 128], a dynamical estimator of partial corre-
lation coupled with an ad hoc procedure for the control of the local false discovery rate at a
given threshold, an algorithm proven to be well performing in reconstruction [4]. Although
the true network is not biologically validated, some landmark publications have used these
datasets (e.g., [129, 130]). Indeed, in the few case where an experimental validation is available,
either the data are not longitudinal (e.g. [131]) or the time series is too short (e.g. [132]) to
guarantee statistical significance to the MIC measure [49, 53], or the network structure is not
suitable for being reconstructed by correlation-based methods, as in the cases of causal analysis
or encoding directional information [9] (e.g. [131]).

GeneNetWeaver Yeast & E. coli data
The datasets for the synthetic example are generated by GeneNetWeaver (GNW) [60, 133] an
open-source tool for in silico benchmark generation, available at the web address http://gnw.
sourceforge.net/genenetweaver.html. GNW generates realistic network structures of
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Fig 5. Example E4.Mutual HIM distances in the H×IM space between 4 non-isospectral graphs A, B, E, F on 4 vertices, whose topology is shown below the
plot. Distance values are listed in the plot legend.

doi:10.1371/journal.pone.0152648.g005
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biologically plausible benchmarks by extracting modules from known gene networks of model
organisms like yeast and E. coli [134], endowing them with dynamics using a kinetic thermo-
dynamical model of transcriptional regulation with added internal noise, allowing for different
types of customizable perturbations. According to the user prescribed constraints and given a
chosen network topology, GNW can also produce steady states and time course datasets with
the expression levels of the network nodes. The annual Dialogue for Reverse Engineering
Assessments and Methods (DREAM, http://www.the-dream-project.org/) Challenge [2, 35, 61,
135–137] initiative for the quantitative comparison of network inference methods relies on
GNW for the synthetic benchmark datasets.

Three synthetic networks are generated by GNW for the first application task, namely
Yeast20, Ecoli20, Ecoli50, where the name points to the original reference network and the sub-
script indicates the number of nodes. In detail, Yeast20 is a subnet of the Yeast transcriptional
regulatory network with 4441 nodes and 12873 edges [134, 138], while Ecoli20 and Ecoli50 are
subnets of the E. coli transcriptional regulatory network with 1502 nodes and 3587 edges, cor-
responding to the TF-gene interactions of RegulonDB release 6.7 of May 2010 [134, 139]. In all
cases, the selected genes are randomly extracted from the whole set of nodes only requiring
that half of the selected nodes be regulators.

For each network, 10 longitudinal datasets {d1, . . . , d10} of expression levels are generated
by a dynamic model mixing ordinary and stochastic differential equations, on 41 time points
equally spaced between time 0 and time 1000 {t0 = 0, t1 = 25, . . . , t40 = 1000}. In each series, the
initial time point t0 = 0 corresponds to the wild-type steady-state and, from that moment
onwards, a perturbation is applied until time point t20 = 500: at that point, the perturbation is
removed, and the gene expression level goes back from the perturbed to the wild-type state
[134]. Moreover, a moderate level of noise is added to all the datasets, namely 0.5% for the
Yeast data and 1% for the E.coli data; in both cases, the selected model is the microarray noise
model described in [140]. Both the noise model and the perturbation scheme are chosen
according to the configuration of the DREAM4 challenge [134]. As an example, in Fig 6 we
show the plots of the generated time course data of four genes belonging to the selected subnets
Yeast20, Ecoli20 and Ecoli50. GNW network and time-course data are publicly available on
figshare, at the URL https://figshare.com/articles/Gene_Net_Weaver_Dataset/2279628.

In each of the three cases Yeast20, Ecoli20 and Ecoli50, a network is inferred by PCC,
DTW-MIC, Transfer Entropy and TimeDelay ARACNE from each of the time course dataset
{d1, . . . , d10}, and the obtained graph is compared via the HIM distance to the corresponding
true network. As an example, in Fig 7 we show the true Yeast20 graph aside the networks recon-
structed from the dataset d1. In all experiments, the results for TimeDelay ARACNE are
reported for N = 11 normalization bins and likelihood 1.2 as in the R package documentation;
worse results (not reported here) were obtained for N = 5 and N = 22.

The results are reported in Table 1 and summarized in the box and whisker plots of Fig 8.
The networks inferred by DTW-MIC are consistently closer to the true network than the
graphs created with other inference methods, apart from Ecoli50 with TimeDelay ARACNE,
with also smaller standard deviation over the 10 experiments in almost all cases.

For the Yeast20 dataset, four additional time course datasets were generated on the same
timepoints, but with a dual gene knockout: the curve of gene YNL221C in Fig 6 is an example
of the generated trajectories. The results of the HIM distances from the true network for the
networks inferred by the PCC, DTW-MIC, Transfer Entropy and TimeDelay ARACNE on the
four datasets d1, . . . , d4 are reported in Table 2.

Again, the DTW-MIC inferred networks are closer to the true network than the other
graphs, in all four experiments, with TimeDelay ARACNE as second best performing
algorithm.

DTW-MIC Coexpression Networks from Time-Course Data
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Human T-cell data
Rangel and colleagues in [62] investigated the dynamics of the activation of T-lymphocites by
analysing the response of the human Jurkat T-cell line subjected to a treatment with phorbol
12-myristate 13-acetate (PMA) and ionomycin. Operatively, they measured the expression of
58 genes across 10 time points (0, 2, 4, 6, 8, 18, 24, 32, 48, and 72 hours after treatment) with
two series of respectively 34 and 10 replicates on a custom microarray built by spotting PCR
products on amino-modified glass slides using a Microgrid II spotter. The preprocessed array
data tcell.34 and tcell.10, log-transformed and quantile normalized, are publicly available in the
R package longitudinal. This package was developed by Opgen-Rhein and Strimmer who
inferred the corresponding network by shrinkage estimation of the (partial) dynamical correla-
tion [128, 141]. Their result is considered here as the true network, displayed in the top left

Fig 6. GeneNetWeaver time series. examples of 4 longitudinal expression level data generated by the GNW kinetic model for the synthetic subgraph of
Yeast and E. coli regulatory networks. Time course data are defined on 41 time points 0, . . . , 1000 and they correspond to the genes YFR030W (black, from
Yeast20), YNL221C (green, from Yeast20 with dual gene knockout), rhaS (from Ecoli20) and putA (from Ecoli50).

doi:10.1371/journal.pone.0152648.g006
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panel of Fig 9. As an example of the data in the tcell.34 and tcell.10, in the top right panel of the
same Fig 9 we show the time course data for the three genes EGR1, CD69 and SCYA2 in the
first out of 34 replicates of tcell.34 and in the first out of 10 replicates of tcell.10.

Eight instances of the T-cell network are inferred, by the three similarity measures
DTW-MIC, PCC and Transfer Entropy and the reconstruction algorithm TimeDelay ARA-
CNE, starting from the two datasets tcell.34 and tcell.10. In both datasets, the dimension of the
longitudinal data for each replicate (10 time points) cannot guarantee robustness in the infer-
ence process, since both PCC and MIC are not reliable for datasets of too small sample size [49,
68, 142]. Hence all replicates in the two datasets are consecutively joined so that time point 72h
of replicate i is followed by time point 0h for replicate i + 1, thus yielding for each gene a single
time course on 340 time points for tcell.34 and on 100 time points for tcell.10. The inferred

Fig 7. GeneNetWeaver data. example of network reconstruction and comparison with the true network. In the top panels, the topology of the synthetic true
network Yeast20 (top left) is shown together with the Systematic Name of its 20 genes (top right). In the two bottom panels, the network Yeast20 as inferred
from the time course dataset d1 by PCC (middle left), DTW-MIC (middle right), TimeDelay ARACNE (bottom left) and Transfer Entropy (bottom right). For the
reconstructed networks, edge width is proportional to arc weight; edges with smaller weights (threshold is 0.001 for PCC, 0.135 for DTW-MIC and 0.005 for
Transfer Entropy) are not drawn to avoid cluttering the image. Distance from the true network is 0.57 for the inference by PCC, 0.22 for the reconstruction by
DTW-MIC, 0.28 for TimeDelay ARACNE and 0.57 for Transfer Entropy.

doi:10.1371/journal.pone.0152648.g007

Table 1. HIM distances with basic statistics of the DTW-MIC (D), the PCC (P), the Transfer Entropy (T) and the Time-Delay ARACNE (A) inferred net-
works for all experiments on the GNW datasets Yeast20, Ecoli20, Ecoli50.

# Dataset Yeast20 Ecoli20 Ecoli50

P D A T P D A T P D A T

d1 0.57 0.22 0.28 0.57 0.37 0.19 0.23 0.52 0.22 0.21 0.23 0.47

d2 0.41 0.21 0.38 0.55 0.41 0.18 0.24 0.50 0.31 0.19 0.16 0.50

d3 0.39 0.20 0.31 0.57 0.38 0.19 0.25 0.52 0.23 0.23 0.23 0.45

d4 0.25 0.25 0.30 0.55 0.22 0.36 0.29 0.53 0.27 0.21 0.19 0.51

d5 0.56 0.24 0.39 0.57 0.41 0.19 0.32 0.52 0.35 0.19 0.19 0.51

d6 0.35 0.19 0.36 0.55 0.53 0.19 0.19 0.54 0.40 0.20 0.13 0.50

d7 0.56 0.23 0.32 0.56 0.39 0.19 0.24 0.51 0.26 0.20 0.17 0.50

d8 0.42 0.22 0.40 0.55 0.52 0.19 0.24 0.53 0.29 0.21 0.21 0.46

d9 0.49 0.22 0.30 0.56 0.42 0.19 0.24 0.53 0.25 0.21 0.19 0.47

d10 0.53 0.22 0.30 0.54 0.21 0.26 0.32 0.50 0.35 0.20 0.14 0.50

Mean 0.45 0.22 0.33 0.56 0.39 0.21 0.25 0.52 0.29 0.20 0.18 0.49

Median 0.45 0.22 0.31 0.56 0.40 0.19 0.24 0.52 0.28 0.20 0.19 0.50

Std. Dev. 0.10 0.02 0.04 0.01 0.11 0.06 0.04 0.01 0.06 0.01 0.03 0.02

doi:10.1371/journal.pone.0152648.t001
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Fig 8. GeneNetWeaver data. box and whisker plot of the HIM distance between the networks inferred from time series and the true graphs, listed in Table 1.
For each true network Yeast20, Ecoli20 and Ecoli50, 10 different graphs are reconstructed by PCC, DTW-MIC, TimeDelay ARACNE and Transfer Entropy
similarity measures.

doi:10.1371/journal.pone.0152648.g008
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networks are displayed in Figs 9 and 10, while in Table 3 the H/IM/HIM distances are reported
between the true and the inferred T-cell networks.

In Fig 11 we show the plot of the metric multidimensional scaling of all mutual HIM
distances.

For both datasets tcell.34 and tcell.10 the HIM distance from the true graph is smaller for
the networks inferred by the DTW-MIC. The TimeDelay ARACNE measure reaches the same
results, but only after a tuning phase optimizing the parameters N = 11, δ = 3 and likelihood
0.7. Note that, in all cases, the Hamming component of the distance is smaller, while the Ipsen-
Mikhailov component is larger. Thus less links are changing between the inferred networks
and the true graph, but these changing links induce a strongly different structure between the
two nets. Indeed, in this experiment the choice of the similarity measure has a larger impact
than the starting dataset, since the nets inferred using the same measure on different datasets
are mutually closer than the nets inferred by different methods on the same time courses.
Finally, without the power function (with β = 6 as default) applied in the WGCNA for soft
thresholding the reconstructed networks are very different from the true graph, regardless of
the starting dataset. For instance, the resulting HIM is about 0.47 for PCC and 0.66 for
DTW-MIC, with 0.63 the average HIM value for a null model generated by computing the dis-
tance from the true graph of 1000 random network with uniform edge weight distribution in
(0, 1). This effect does not come unexpected, because of the tendency of MIC to overestimate
the MI in a number of situations [9, 22, 67, 68], thus generating false positives. An effective
solution to avoid this bias and obtaining a more reliable estimate is the use of a thresholding
function, either hard as in [142] or soft as in this case via a power law: these procedures allow
discarding completely (hard threshold) or greatly reducing the weight of (soft threshold) the
unwanted links wrongly detected by the association measure.

Conclusions
We introduced here DTW-MIC, a novel similarity measure for inferring coexpression net-
works from longitudinal data as an alternative to the absolute PCC used in the WGCNA
approach. By combining Dynamic Time Warping and Maximal Information Coefficient, the
DTW-MIC similarity can overcome the well known limitations of PCC when dealing with
delayed signals and indirect interactions. Experiments on biologically inspired synthetic data

Table 2. HIM distance from the true network TN Yeast20 of the networks inferred on the knock-out
series d1, . . . , d4 by the four algorithm PCC, DTW-MIC, Transfer Entropy and TimeDelay ARACNE.

d1 d2 d3 d4

DTW-MIC 0.23 0.21 0.24 0.21

PCC 0.30 0.27 0.31 0.47

TimeDelay ARACNE 0.24 0.28 0.28 0.26

Transfer Entropy* 0.29 0.28 0.31 0.24

* d1, . . . , d4 do not satisfy the assumptions of the Kraskov estimator, thus Transfer Entropy cannot be

computed. As suggested by the R package documentation, a small Gaussian noise ε 2 N ðm ¼ 0;s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 � s2ðdi

p Þ was added to di before computing Transfer Entropy.

doi:10.1371/journal.pone.0152648.t002
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Fig 9. The T-cell example: True and DTW-MIC network. The (true) network as reconstructed by Opgen-Rhein and Strimmer [128] (top left); the time course
for three example genes EGR1 (blue), CD69 (red) and SCYA2 (orange), from replicate 1 of the tcell.34 (circles) and of the tcell.10 (squares) dataset. In the
second row, the networks inferred by DTW-MIC from the tcell.10 (left) and from the tcell.34 (right) dataset; in these last two graphs, edges with weight smaller
than 0.225 are not displayed.

doi:10.1371/journal.pone.0152648.g009
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Fig 10. The T-cell example: comparison networks. The Human t-cell network as reconstructed by PCC
(top row), TimeDelay ARACNE (middle row) and Transfer Entropy (bottom row), from the tcell.10 (left column)
and from the tcell.34 (right column) dataset. Edges with weights smaller than 0.1 for PCC and smaller than
0.0001 for Trasfer Entropy are not displayed.

doi:10.1371/journal.pone.0152648.g010
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and gene expression time course data demonstrate higher precision on average in the network
inference for DTW-MIC with respect to PCC, TimeDelay ARACNE and Transfer Entropy in
different conditions, and without the need for a parameter tuning phase. Considering the MIC
bias towards false positives and the availability of numerous similarity measures derived from
DTW, it is likely to expect as future development the exploration of different alternatives to the
DTW-MIC pair. For instance, it has been pointed out that Brownian distance correlation [67,
76] and biweight midcorrelation [9, 143] do not suffer from the issues affecting MIC, and thus
they may be adopted as replacements for MIC; on the other hand, ComplexityInvariantDTW
[109] appears to be the most effective alternative to DTW, well performing on a wide range of
situations, and thus worth exploring as a potential substitute.

Table 3. Hamming (H, topmatrix, upper triangle), Ipsen-Mikhailov (IM, topmatrix, lower triangle) and HIM (bottommatrix) distances among the true
(TN) and the T-cell WGCNA inferred networks, by DTW-MIC (D), PCC (P), Transfer Entropy (T) and Time-Delay ARACNE (A) similarity measure,
from the tcell.34 (34) and the tcell.10 (10) time course datasets.

TN D34 P34 T34 A34 D10 P10 T10 A10

TN & 0.11 0.06 0.05 0.08 0.09 0.06 0.05 0.10

D34 0.20 & 0.06 0.07 0.10 0.05 0.07 0.07 0.13

P34 0.30 0.49 & 0.02 0.05 0.05 0.02 0.02 0.08

T34 0.70 0.85 0.49 & 0.05 0.05 0.01 0.00 0.08

A34 0.65 0.81 0.45 0.05 & 0.05 0.01 0.00 0.09

D10 0.18 0.17 0.43 0.83 0.35 & 0.04 0.05 0.11

P10 0.35 0.55 0.06 0.48 0.28 0.47 & 0.01 0.08

T10 0.68 0.84 0.45 0.07 0.49 0.81 0.44 & 0.08

A10 0.63 0.78 0.43 0.07 0.18 0.76 0.42 0.09 &

D34 P34 T34 A34 D10 P10 T10 A10

TN 0.16 0.21 0.49 0.16 0.14 0.25 0.48 0.14

D34 0.35 0.60 0.26 0.13 0.39 0.60 0.21

P34 0.34 0.17 0.30 0.04 0.32 0.24

T34 0.36 0.59 0.34 0.05 0.48

A34 0.26 0.20 0.35 0.14

D10 0.34 0.57 0.22

P10 0.31 0.28

T10 0.47

The two datasets tcell.i, i = 10, 34 do not satisfy the assumptions of the Kraskov estimator, thus Transfer Entropy cannot be computed. As suggested by

the R package documentation, a small Gaussian noise ε 2 N ðm ¼ 0;s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 � s2ðtcell:ip Þ was added to tcell.i, i = 10, 34 before computing Transfer

Entropy.

doi:10.1371/journal.pone.0152648.t003
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Fig 11. Metric multidimensional scaling of HIM distances. Planar projection conserving the mutual distances between the true Human t-cell network (TN)
and the eight networks inferred from the two datasets tcell.34 (�34) and tcell.10 (�10) by the four reconstruction algorithms DTW-MIC (D), PCC (P), Transfer
Entropy (T) and TimeDelay ARACNE (A).

doi:10.1371/journal.pone.0152648.g011
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