Book of Abstracts

32nd INTERNATIONAL SPECIALIZED SYMPOSIUM ON YEASTS

YEAST BIODIVERSITY AND BIOTECHNOLOGY IN THE TWENTY-FIRST CENTURY

SEPTEMBER 13-17, 2015

HOTEL GIÒ - PERUGIA CONGRESS CENTRE,
PERUGIA, ITALY
www.issy32.com
32nd International Specialized Symposium on Yeasts

Yeasts Biodiversity and Biotechnology in the Twenty-First Century

Perugia, Italy

September 13-17, 2015

BOOK OF ABSTRACTS

Edited by:

Pietro Buzzini
Lisa Granchi
Patrizia Romano
Benedetta Turchetti

Published by the Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy.
All right reserved.

ISBN 978-88-99407-00-1

http://www.unipg.it/
http://www.agr.unipg.it/
Social wasps are mating nests for yeasts

Irene Stefanini¹, Leonardo Dapporto², Luisa Berna³, Mario Polsinelli⁴, Stefano Turillazzi⁴, Duccio Cavalieri⁴,⁵

¹Centre for Research and Innovation, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy; ²Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK; ³Molecular Biology Unit, Institut Pasteur, Montevideo, Uruguay; ⁴Department of Biology, University of Florence, Italy; ⁵Centro di Servizi di Spettromeria di Massa, University of Florence, Florence, Italy; ⁶Department of Neuroscience, Psychology, Drug Research and Child's health, University of Florence, Florence, Italy

irene.stefanini@fmach.it

Saccharomyces cerevisiae (Sce) is largely used as a model for a wealth of purposes. The recent availability of genome sequences of a large number of S. cerevisiae and S. paradoxus (Spa) strains representing the widest known genetic, phenotypic and geographical diversity renewed the interest in the use of these yeasts as models for evolution and ecology studies. Nevertheless, one of the still unanswered questions is whether genetically diverse yeasts mate and recombine in the wild. The yeasts outcrossing was estimated to occur only once every 10⁵ mitotic division, thus confining their reproduction to mitosis and to occasional intra-ascus breeding (inbreeding). Although, the recent observation on larger set of strains of unexpectedly high levels of genetic heterozygosity and prions diffusion called the rarity of outcrossing into question. To outbreed at least two conditions have to occur: i) different strains has to simultaneously inhabit the same area, ii) they have to face environmental oscillations favouring sporulation (because natural yeasts are usually diploid) followed by germination. Social wasps have been shown to bear yeast cells all year long and feeding on sources that are potentially inhabited by different Saccharomyces spp. strains, thus representing a potential incubator for different yeast cells to meet and mate. Here we show that the intestine of social wasps favours the mating of different yeast strains and species by providing a sequentiality of environmental conditions prompting the sporulation and germination of S. cerevisiae and making heterospecific mating the only option for S. paradoxus to survive. Our results open a new perspective introducing insects as unaware players in the evolution of Saccharomyces spp. yeasts. Saccharomyces spp. yeasts could prefer sexual reproduction to react to the environment changes occurring within the wasp intestine and in the continuous flux from the wasp to the environment and vice-versa.

KEYWORDS: Saccharomyces cerevisiae, Saccharomyces paradoxus, Ecology, Mating, Evolution