Probiotic potential of a high GABA producing strain, *Lactobacillus brevis* FEM 1874, isolated from traditional “wild” Alpine cheese.

Andrea Mancini, Elena Franciosi, Ilaria Carafa, Francesca Fava, Roberto Visib, Kieran Tuohy

Nutrition and Nutrigenomic Group, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all’Adige (TN), Italy

Introduction
Probiotics and their metabolites can act as brain modulators through the gut-brain axis system. In this respect γ-aminobutyric acid (GABA) gut bacteria produce, has been identified as a possible factor improving brain function, inhibiting inflammation and regulating energy metabolism.

Study design
"Wild" Alpine cheese isolate *Lactobacillus brevis* FEM 1874 was characterized for potential probiotics traits and GABA production. Acid, bile and pancreatic fluid resistance was assessed and the genetic loci for GABA production and export characterized for the subsequent knock-out vectors construction.

1) **FEM 1874 survives in gastrointestinal physicochemical condition**

Acid tolerance (pH 2, 2.5, 3.2). Acid treatment performed in PBS at 0 and 3h (T0 and T3 resp). Cell counts compared to type strain grown in the same condition (mean ± sd, N = 3).

Bile Salt Hydrolysis (BSH) assay. BSH activity performed on MRS agar plates supplemented with 0.5% of bile acids. (mean ± sd, N = 3).

Pancreatic fluid tolerance. Tolerance test performed in NaHCO₃ with 1.9 mg/ml pancreatin for 3h. Cell counts compared to type strain grown in the same condition (mean ± sd, N = 3).

2) **FEM 1874 produced high GABA level**

Effect of bile salts after low pH treatment. Bile acid (Ox bile) treatment performed in MRS over time after pH 2.5 exposure (3h) (mean ± sd, N = 3).

Growth rate with bile salts. Bile acid (Ox bile) treatment performed in MRS over time (mean ± sd, N = 3).

Results

Conclusions
Lactobacillus brevis FEM 1874 was confirmed as a high GABA producing strain with potential as a probiotic for human use, given it’s ability to survive under simulated gut-brain physicochemical conditions. However, its ability to produce GABA within the gut and consequently mediate health benefits via the gut-brain axis and immune system, must further be confirmed in vivo. **Contact:** andrea.mancini@fmach.it