GRASS GIS 7: Efficiently processing big geospatial data

FOSDEM 2015, Brussels
31 Jan & 1 Feb 2015

4.8T /grassdata/eu_laea/modis_lst_reconstructed
3.6T /grassdata/eu_laea/modis_lst_reconstructed_europe_daily
2.0T /grassdata/eu_laea/modis_lst_reconstructed_europe_GDD
1.1T /grassdata/eu_laea/modis_lst_reconstructed_europe_weekly
...
48G /grassdata/eu_laea/modis_lst_koeppen
22G /grassdata/eu_laea/modis_lst_reconstructed_europe_annual
40G /grassdata/eu_laea/modis_lst_reconstructed_europe_bioclim
275G /grassdata/eu_laea/modis_lst_reconstructed_europe_monthly
38G /grassdata/eu_laea/modis_lst_reconstructed_europe_monthly_averages
15G /grassdata/eu_laea/modis_lst_reconstructed_europe_winkler
55G /grassdata/eu_laea/modis_lst_validation_europe
The new release: GRASS GIS 7 User interface

What you think it is...
The new release: GRASS GIS 7 User interface

What you think it is...

What it really is...

Raster, Vector, Volumes

LiDAR time series
GRASS GIS 7: Map histogram tool

Additionally:
Histogram in legend
GRASS GIS 7: New Geospatial Modeller

Extra bonus: Export it as a Python script
GRASS GIS 7: Supervised image classification

Tool for supervised classification of imagery data.
Generates spectral signatures for an image by allowing the user to outline regions of interest.
GRASS GIS 7: Unsupervised image classification

i.segment - Identifies segments (objects) from imagery data.

Screenshot 1:
- GRASS GIS Map Display window showing an aerial image.
- Tools for overlay, render, and view settings.

Screenshot 2:
- Rendered output showing segmented areas in different colors.
- Each segment represents a classified object.

Screenshot 3:
- GUI for i.segment tool with settings explained.
- Required inputs: Name of input imagery group, Name for output raster map, Difference threshold between 0 and 1.
- Sample inputs:
 - Ortho2010_t792_subset_20cm@user1
 - Ortho2010_t792_subset_20cm_segment
 - Threshold = 0.75

Pietro Zambelli
Vector data processing
GRASS GIS 7: Topological Vector Digitizer

Vector topology in a nutshell

Common boundaries between two adjacent areas are stored as single boundaries (= shared).

→ Simplifies vector data maintenance (no gaps and slivers possible)
GRASS GIS 7: Topological Vector Digitizer in PostGIS 2 (under development)

Programmer: Martin Landa

http://grass.osgeo.org/grass70/manuals/v.out.postgis.html

http://grasswiki.osgeo.org/wiki/PostGIS_Topology

Cofunded by Municipality of Trento, Italy
Vector network analysis in GRASS GIS 7

Programmer: Stepan Turek
GRASS GIS 7 Temporal Framework: Time-series support
New Space-Time functionality in GRASS GIS 7

Temporal data processing in GRASS GIS

The temporal GIS framework in GRASS introduces three new datatypes that are designed to handle time series data:

- **Space time raster datasets** (strds) are designed to manage raster map time series. Modules that process strds have the naming prefix t.rast.
- **Space time 3D raster datasets** (str3ds) are designed to manage 3D raster map time series. Modules that process str3ds have the naming prefix t.rast3d.
- **Space time vector datasets** (stvds) are designed to manage vector map time series. Modules that process stvds have the naming prefix t.vect.

Temporal data management in general

List of general management modules:

- t.connect
- t.create
- t.remove
- t.register
- t.unregister
- t.info
- t.list
- t.rast3d.list
- t.vect.list
- t.vect.db.select
- t.sample
- t.support
- t.topology
- t.rast.export
- t.rast.import
- t.rast.out.vtk
- t.rast.to.rast3
- r3.out.netcdf
- t.vect.export
- t.rast.list
- t.rast.extract
- t.rast.gapfill
- t.rast.mapcalc
- t.rast3d.extract
- t.rast3d.mapcalc
- t.rast3d.univar
- t.vect.extract
- t.vect.import
- t.vect.observe.strds
- t.vect.univar
- t.vect.what.strds
- t.rastaggregate.ds
- t.rastaggregate
- t.ras.series

Space time datasets are stored in a temporal database. SQLite3 or PostgreSQL are supported as SQL database back end. Connection settings are performed with t.connect. As default a sqlite3 database will be created in the PERMANENT mapset that stores all space time datasets and registered time series maps from all mapsets in the location.

New Space-Time functionality in GRASS GIS 7

Time series plot (Chlorophyll vs Time) for a certain coordinate pair
(by Veronica Andreo)
Visualization
GRASS 7: New animation tool for time series

The Animation Tool is a wxGUI component for animating a series of GRASS raster maps or a space time raster dataset (created by t* modules).

Animation Tool allows you to:

- display up to 4 synchronized animations
- control the animation speed
- interactively change active frame using a slider
- visualize space time datasets with unequally spaced intervals
- animate 3d view (partially implemented)

3D view animation enables to animate raster (as an elevation map or a color map) or vector m.nviz.image is used. To display 3D view animation follow these steps:

- open GRASS GUI, load maps and start 3D view
- set view, light and other parameters as you like
- save workspace file
- add new animation in Animation Tool, choose 3D view mode
- choose data (series of maps or space time dataset) used for animation
- set workspace file
- choose parameter (parameter of m.nviz.image) to animate (e.g. color_map)

Nagshead LiDAR time series: dune moving over 9 years (NC, USA)

http://grass.osgeo.org/grass70/manuals/g.gui.animation.html
New Map swiping tool for multitemporal maps

Pre and post disaster images of the tsunami in Japan in 2011 (MODIS images taken on February 26 and March 13, 2011)
GRASS 7: New visualization tool: wxNVIZ

http://grasswiki.osgeo.org/wiki/WxNVIZ

Programming/screenshot: Anna Petrasova
New visualization methods (NC state university)

LiDAR derived DSM: 100k x 50k pixels

GRASS GIS goes theatre
GRASS GIS as Open Source GIS backbone:
Connecting to other software packages
Dissolving geometry by string column attributes: Processing calls GRASS GIS in a virtual session which delivers the result back (here: SHAPE file)
GRASS GIS 7 and R Integration

http://grass.osgeo.org/wiki/R_statistics

GRASS 7.0.0svn (nc_spm_08_grass7):~ > g.region raster=elevation -p
GRASS 7.0.0svn (nc_spm_08_grass7):~ > R

R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-redhat-linux-gnu (64-bit)
[...]

> library(spgrass7)
Loading required package: sp
Loading required package: XML
GRASS GIS interface loaded with GRASS version: GRASS 7.0.0svn (2015) and location: nc_spm_08_grass7
> myrast <- readRAST(c("geology", "elevation"), cat=c(TRUE, FALSE))
> myvect <- readVECT("roadsmajor")

> str(myvect)
> boxplot(myrast$elevation ~ myrast$geology)
> title("Elevation versus geological classes")
> ...
> writeRAST(myrast, "elev_filt", zcol="elev")
GRASS GIS 7: Native OGC WPS Support

http://grasswiki.osgeo.org/wiki/WPS

r.grow --wps-process-description

```xml
<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd"
service="WPS" version="1.0.0" xml:lang="en-US">
  <ProcessDescription wps:processVersion="1" storeSupported="true" statusSupported="true">
    <ows:Identifier>r.grow</ows:Identifier>
    <ows:Title>Generates a raster map layer with contiguous areas grouped by one cell</ows:Title>
    <ows:Abstract>Generates a raster map layer with contiguous areas grouped by one cell</ows:Abstract>
    <ows:OperationIdentifier>r.grow</ows:OperationIdentifier>
  </ProcessDescription>
</wps:ProcessDescriptions>
```

register GeoTIFF file in GRASS database:
```
r.external input=tempmap1.tif output=modis_celsius
```

define output directory for files resulting from GRASS calculation:
```
r.external.out directory=$HOME/gisoutput/ format="GTiff"
```

perform GRASS calculation (here: extract pixels > 20 deg C)
```
# write output directly as GeoTIFF:
# cease GDAL output connection and turn back to write GRASS raster files
```
```
r.mapcalc "warm.tif = if(modis_celsius > 20.0, modis_celsius, null() )"
r.external.out -r
```

use the result elsewhere
```
qgis $HOME/gisoutput/warm.tif
```
Programming own applications with GRASS GIS 7
New GRASS 7 Python API

http://grass.osgeo.org/wiki/GRASS_and_Python

More in the next talk:

GRASS Development APIs
Lifting the fog on the different ways to develop for GRASS
By Moritz Lennert

https://fosdem.org/2015/schedule/event/grass_api/
Support for massive spatial datasets in GRASS GIS
GRASS GIS 7: Support for massive datasets

What is massive?

Massive is relative to

- Hardware resources
- Software capabilities
- Operating system capabilities

Limiting factors

⚠️ RAM
⚠️ Processing time
✔️ Disk space
✔️ Largest supported file size

⚠️ expensive
⚠️ cheap
✔️ ... to solve issue
Speed improvements in the vector engine

Spatial query example
Query of vector point maps

GUI: click on vector map, what is there?

CLI: v.what east_north=east,north

Programmer: Markus Metz
Example cost surfaces: \textit{r.cost}

\begin{itemize}
 \item \textbf{GRASS GIS 6}
 \item \textbf{GRASS GIS 7}
\end{itemize}

\textbf{Other speed figure: PCA of 30 million pixels in 6 seconds} on this small presentation laptop...
GRASS GIS 7 goes supercomputer

- Since **2005** (10 years) GRASS GIS is running *natively* on 64bit CPUs
- GRASS GIS 7 also offers Large File Support on 32bit Windows

- Installed on Grids and TOP500 supercomputers (AKKA Umeå, ENEA Frascati, Aurel Bratislava, ...)
- Runs on Linux, AIX, Solaris, freeBSD, netBSD, (MS-Windows)...
- Various ways of parallelization

Hints: http://grasswiki.osgeo.org/wiki/Compile_and_Install
EuroLST: MODIS LST daily time series

Summary workflow of daily MODIS LST reconstruction at continental scale

1. Pre-processing
 - MODIS LST products MOD11A2, MYD11A2 (daily, 2000-2013)
 - Mosaicking of MODIS tiles, re-projection from Sinusoidal to LAEA, QA pixel filter

2. Reconstruction in time
 - Temporal averaging
 - Temporal average (≈ 7 days), partial void filling of daily LST maps
 - 1. Multiple regression I (MR I)
 - Estimate LST from solar angle and elevation (spatial enhancement)
 - 2. Multiple regression II (MR II)
 - Estimate residuals of regression I from climatic parameters
 - 3. Outlier filtering and Spline interpolation
 - Filtering of MR II results, Random sampling and creation of continuous LST residuals
 - 4. Reverse regression
 - Combination of interpolated LST residuals with LST MR I estimates and LST MR II estimates

3. Reconstruction in space

4. Result
 - Reconstructed MODIS LST overpass

Data from 2000-today
Each pixel = virtual meteo station

EuroLST: http://gis.cri.fmach.it/eurolst/
Metz, Rocchini, Neteler, 2014: Remote Sens 6, DOI: 10.3390/rs6053822
EuroLST: MODIS LST daily time series

Example: Land surface temperature for Sep 26 2012, 1:30 pm

Reconstructed, i.e. gap-filled data

17,000 maps à 415 million pixels
MODIS Land Surface Temperature LST reconstruction

... on a cluster computer

FEM-GIS Cluster

- In total 300 nodes with 600 Gb RAM
- 132 TB raw disk space, XFS, GlusterFS
- Circa 2 Tflops/s
- Scientific Linux operating system, blades headless
- Queue system for job management (Grid Engine), used for GRASS jobs

- Computational time for all data: 1 month with LST-algorithm V2.0
- Computational time for one LST day: 3 hours on 2 nodes
FEM-GIS Cluster

- **Intranet 10Gb/s**
- **Frontend node**
 - 6Gb/s SAS
 - RAID 6: 16TB XFS
- **Storage node**
 - 3Gb/s SAS
 - RAID 5: 16TB XFS
- **300 nodes**
 - Blades with RAID 0 local disks
 - 10Gb/s stacking
 - Blades with RAID 0 local disks

/grassdata
- RAID 6: 16TB XFS
- RAID 5: 16TB XFS
- NFS used for sharing of partitions
- Grid Engine for job management

- **Scientific Linux 7**
- oneSIS diskless blades
- Switch 48 Ports
- Trunking 8 Gb/s
- 8 Micorservers: 96TB disks
- GlusterFS
“Big data” challenges on a cluster

GRASS GIS – LST data processing “evolution”:

- **2008**: internal **10Gb network** connection way to slow...

 Solution: TCP jumbo frames enabled (MTU > 8000) to speed up the internal NFS transfer

- **2009**: hitting an **ext3 filesystem limitation** (not more than 32k subdirectories but more files in cell_misc/ – each raster maps consists of multiple files)

 Solution: adopting **XFS filesystem** [err, reformat everything]

- **2012**: Free inodes on **XFS exceeded**

 Solution: Update XFS version [err, reformat everything again]

- **2013**: **I/O saturation** in NFS connection between chassis and blades

 Solution: reduction to one job per blade (queue management), 21 blades * 2.5 billion input pixels + 415 million output pixels

- **GlusterFS saturation**

 Solution: New 48 port switch, 8-channel trunking (= 8 Gb/s)
Where is the stuff?

GRASS GIS 7 Software:
Free download for MS Windows, MacOSX, Linux and source code:

 http://grass.osgeo.org/download/

Addons (user contributed extensions):

 http://grasswiki.osgeo.org/wiki/GRASS_AddOns

Free sample data:
Rich data set of North Carolina (NC)
... available as GRASS GIS location and in common GIS formats

 http://grass.osgeo.org/download/sample-data/

User Help:
Mailing lists (also in different languages):

 http://grass.osgeo.org/support/

Wiki:

 http://grasswiki.osgeo.org/wiki/

Manuals:

 http://grass.osgeo.org/documentation/manuals/
Coming soon:
GRASS GIS 7.0.0!

THANKS

Markus Neteler
Fondazione E. Mach (FEM)
Centro Ricerca e Innovazione
GIS and Remote Sensing Unit
38010 S. Michele all'Adige (Trento), Italy
http://gis.cri.fmach.it
http://www.osgeo.org
markus.neteler@fmach.it
neteler@osgeo.org