SECOND INTERNATIONAL CONGRESS OF

Program and abstract book

CLERMONT-FERRAND (FRANCE)

CRNH

CRNH Auvergne

in collaboration with

NuGO

NUTRIGENOMICS ORGANISATION

MARCH 8-9, 2013

INTEGRATIVE APPROACHES IN NUTRITION RESEARCH

www.ictrhn2013.com
Title: ACCURATE IDENTIFICATION AND PROFILING OF ELLAGITANNINS IN STRAWBERRIES AND WOODLAND STRAWBERRIES: THE INFLUENCE OF CULTIVAR ON THE CONCENTRATION AND COMPOSITION OF ELLAGITANNINS.

Authors and addresses: Mattia Gasperotti#, Domenico Masuero#, Graziano Guella‡, Luisa Palmieri#, Paolo Martinatti#, Elisa Pojer#, Fulvio Mattivi#, Urska Vrhovsek#
#Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
‡Department of Physics, University of Trento, via Sommarive 14, 38100, Trento, Italy

Presenting author: Mattia Gasperotti

Abstract: Of the most commonly consumed berries, strawberries (Fragaria x ananassa Duch.) are the most popular choice with consumers, being eaten both fresh and frozen, as well as in different processed products. Although the composition of strawberry fruit has been extensively studied, especially for the most abundant phenolic compounds, ellagittannins and in detail agrimoniin has been only recently univocally identified as one of the most abundant phenolic compounds in strawberry (Vrhovsek et al. 2012). This class of natural polyphenols recently gained much attention in light of the experimental evidence of their anticancer activities, antiproliferative properties, and antibacterial activity on intestinal pathogens. Furthermore agrimoniin is a known bioactive compound, which has been used for treatment of diarrhea and haemorrhaging and reported to have antitumor properties. Its presence as the main ellagittannin in both strawberry and woodland strawberry fruit is therefore noticeable. Of fruit containing ellagittannins, strawberries are the most widely consumed, and agrimoniin is suggested to be one of the most widely present ellagittannin in the human diet (manuscript in preparation).

The establishment of an HPLC protocol for the separation of the ellagittannins (Gasperotti et al. 2010), and the isolation and characterisation of the main ellagittannins and ellagic acid derivatives, allowed us an accurate quantification of ellagittannins and ellagic acid conjugates in 6 different varieties of strawberry and in 2 woodland strawberry. The structural characterization was obtained by QTOF-HDMS in order to discriminate the different oligomeric form or the differences between the ellagittannins with similar building block units. The presence of 23 ellagittannins and 3 ellagic acid conjugates in the strawberry extracts was confirmed among the strawberry cultivars and woodland strawberry types.

Woodland strawberries were the richest in terms of absolute concentration of ellagittannins and number of ellagittannins. Beside that, different cultivars of strawberries differ significantly in the amount and also profiles of ellagittannins. These data give evidence that more precise information about the fruit composition in term of their nutritional relevance needs to be taken into account in food metabolomics studies and their application to nutritional research. The attention of the consumer needs to be moved in the direction of the consumption of more nutritional relevant cultivar.

Agrimoniin, together with the other strawberry ellagittannins and ellagic acid derivatives characterised in this study, deserve further attention since they are expected to play an important, yet still largely unexplored, role in the relationship between healthy effects and the consumption of strawberries in humans.

Literature:
Vrhovsek et al. 2012, JAFC, DOI: 10.1021/jf2052256
Gasperotti et al. 2010, JAFC. DOI: 10.1021/jf904543w