Vigneti policlonali ed ottimizzazione delle caratteristiche sensoriali dei vini

F. Iacono - F. Campostrini - G. Nicolini
Istituto Agrario di S. Michele all'Adige - TN

Introduzione

Le differenze clonali che esistono all'interno di una popolazione sono state largamente studiate dal punto di vista morfologico. Sono inoltre note le differenze che si manifestano a carico delle caratteristiche quanti-qualitative dell'uva (Scienza et al., 1984). Anche dal punto di vista fisiologico i cloni manifestano peculiarità interessanti che impongono l'esigenza di ottimizzare il rapporto del vitigno con l'ambiente; alcuni cloni infatti mantengono costanti le loro caratteristiche negli anni e/o nei diversi ambienti di coltivazione, altri invece risultano particolarmente interattivi con i fattori dell'agrosistema (Stefanini et al., 1992-1993).

Tali evidenze mettono in luce la necessità di approfondire lo studio dei legami che intercorrono fra genotipo ed ambiente al fine di conoscere quali meccanismi sono coinvolti nel processo di adattamento ambientale ed in che modo intervengano.

Questo spunto di indagine, nel caso della vite, si arricchisce della componente trasformazione che il prodotto subisce per divenire vino.

Infatti, le peculiarità che caratterizzano le specifiche selezioni clonali si esplicano nel vino, dal punto di vista chimico ed organolettico, in specifi-
cità estremamente interessanti (Falcetti et al., 1990).

È infatti ormai noto come caratteristiche legate alla forma del grappolo, alla produttività e alla modalità di controllo del decorso di maturazione, siano importanti componenti del risultato organolettico finale del vino (Iacono et al., 1992c).

La estrema variabilità riscontrata dal punto di vista viticolo-enologico nell’ambito delle diverse selezioni clonali, così come il legame che esse creano in rapporto all’ambiente (Scienza et al., 1988), suggeriscono la possibilità di sviluppare un’interazione sinergica fra caratteristiche clonali e sistema agro-ambientale al fine di ottimizzare i risultati qualitativi.

L’analisi sensoriale costituisce a proposito un valido mezzo per approfondire tali studi (Ubbigl, 1990-1992), contribuendo ad una migliore interpretazione e maggiore applicabilità degli impregindibili dati agronomici e chimico-analitici.

Si fa riferimento per esempio alla tradizionale scelta di cloni a grappolo piccolo per migliorare le caratteristiche del vino senza accompagnare tale affermazione con oggettivi dati di confronto.

Nel presente studio, al fine di sottolineare come la complementarietà fra le caratteristiche organolettiche di specifici genotipi possa essere studiata e quindi valorizzata, si sono utilizzati vini monoclonali prodotti da uve coltivate in un medesimo ambiente.

Questa sono stati quindi assemblati in percentuali differenti (Sergent, 1985-1989) con lo scopo di esemplificare un modello applicativo di estremo interesse al momento della scelta delle modalità di esecuzione di un impianto viticolo.

Materiali e metodi

Nell’ambito del programma della selezione clonale del Prugnolo gentile in corso nella zona di Montepulciano, eseguita dall’Istituto Agrario di S. Michele all’Adige con la collaborazione del Consorzio del Nobile di Montepulciano, sono stati individuati tre presunti cloni che si differenziano particolarmente per le caratteristiche organolettiche dei vini da essi prodotti (Campotirini et al., 1993). In particolare sono stati scelti i presunti cloni denominati con le sigle «979», «507» e «291» (foto 1, 2 e 3) che nel presente lavoro saranno denominati rispettivamente A, B e C.

I vini prodotti nell’annata 1990 sono stati assemblati seguendo lo schema di tab. 1 ottenendo così 15 prodotti differenti per composizione (Iacono et al., 1992a). Poiché la selezione clonale in atto per il Nobile di Montepulciano è indirizzata all’individuazione di genotipi che mantengano nel tempo le tipiche caratteristiche florali del Vino Nobile, gli assemblaggi sono stati analizzati sensorialmente nell’estate 1993 (dopo quasi tre anni dalla vendemmia).

Le sessioni di analisi sensoriale sono state eseguite dal Gruppo di Analisi Sensoriale dell’Istituto Agrario di S. Michele all’Adige secondo le modalità descritte in Iacono et al. (1992b).

È stata utilizzata una scheda parametrica non strutturata specificatamente formulata (tab. 2) ed i dati sono stati sottoposti ad analisi fattoriale multivariata.

Risultati

Caratterizzazione del profilo organolettico del vino Prugnolo gentile

L’applicazione dell’Analisi Fattoriale ha consentito di ridurre il numero di descrittori organolettici da valutare ed ha creato 5 fattori composti che rappresentano il 68,59% della variabilità totale (tab. 3). Il primo fattore è costituito positivamente dai descrittori amaro, salato,...
Fig. 1 - Relazioni fra i descrittori organolettici e gradevolezza globale del vino Prugnolo.

Fig. 2 - Profilo organolettico dei singoli assemblaggi con indicato l'errore standard (le codifiche degli assemblaggi sono descritte in tab. 1).

Acido e astringente e definisce quindi «il gusto» del vino. Il secondo fattore è rappresentato in modo significativamente positivo dalla qualità del colore e dalle note speziato e di tabacco-fieno unitamente alla struttura del vino. Tale fattore descrive quindi un carattere molto importante per il Prugnolo e cioè la «struttura ed il colore» e le note speziato e mature del fieno secco. Il terzo fattore, costituito positivamente dalle note florale e speziato e negativamente da quelle di diacetile (burro) rappresenta la componente organolettica fresca di «florale-speziato». Il quarto fattore, costituito positivamente dai descrittori frutti rossi (amarena) e mela matura e negativamente da quelle di fenolo, rappresenta il carattere «fruttato». L'ultimo fattore descrive invece il carattere «etereo-vinoso» del vino essendo costituito esclusivamente e positivamente solo da questi due descrittori. L'Analisi Fattoriale non è stata eseguita per il descrittore gradevolezza globale, in quanto si è voluto indagare

Tab. 3 - Fattori estratti con l'Analisi Fattoriale per i dati sensoriali relativi ai diversi assemblaggi di presunti cloni di Prugnolo. Metodo di rotazione Varimax.

% di variabilità rappresentata dai 5 fattori estratti = 68,59%.

<table>
<thead>
<tr>
<th>Rotated Factor Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
</tr>
<tr>
<td>Oltre colore</td>
</tr>
<tr>
<td>Amarena</td>
</tr>
<tr>
<td>Florale</td>
</tr>
<tr>
<td>Mela</td>
</tr>
<tr>
<td>Diacetile</td>
</tr>
<tr>
<td>Speziato</td>
</tr>
<tr>
<td>Tabacco</td>
</tr>
<tr>
<td>Fenolo</td>
</tr>
<tr>
<td>Vinone</td>
</tr>
<tr>
<td>Amaro</td>
</tr>
<tr>
<td>Salato</td>
</tr>
<tr>
<td>Acido</td>
</tr>
<tr>
<td>Astring</td>
</tr>
<tr>
<td>Struttura</td>
</tr>
</tbody>
</table>
il suo legame con i descrittori organolettici specifici.

L'analisi di regressione multipla lineare ha confermato che la scheda utilizzata descrive in modo soddisfacente il profilo organolettico del vino in oggetto in quanto il parametro gradevolezza globale è risultato significativamente correlato con 4 dei fattori estratti (F1, F2, F3, F4).

L'equazione stimata è risultata essere:

\[
\text{Gradevolezza globale} = -0.022 + 0.306 F1 + 0.349 F2 + 0.324 F3 + 0.260 F4 (R^2 = 0.6592).
\]

I primi 4 fattori risultano essere correlati positivamente con il carattere gradevolezza globale e ciò è messo in evidenza dallo studio delle correlazioni lineari semplici fra le singole coppie di parametri (fig. 1). Da esse infatti si evince che, in modo significativo, ad elevati valori di intensità del fattore «gusto», «struttura e colore», «florale-speziato» e «fruttato» anche la gradevolezza del vino risulta maggiore; in altrì termini evidenziano come la qualità globale sia legata a più caratteri che definiscono la complessità organolettica dei vini Prugnolo.

Profilo organolettico dei singoli assemblaggi

Gli assemblaggi eseguiti con differenti percentuali del vini A, B e C risultano particolarmente differenti dai vini base evidenziando che l'unione di più vini in percentuali oculate può dar vita ad un vino qualitativamente migliore o peggiore rispetto all'ipotetico effetto esclusivamente addizionale delle componenti organolettiche. Il campione «7» derivante dall'assemblaggio del 70% di vino A, 10% del vino B e 20% del vino C è fra le possibilità proposte quello con maggiore «gusto» e «gradevolezza globale». Il campione «8» invece che si differenzia dal «7» solo per la invertita percentuale dei vini B e C, è stato giudicato meno valido dal panel.

La estrema variabilità di risposta organolettica evidenziata, ha suggerito l'analisi dell'influenza dell'aumento della diversa percentuale del vino base sulla sua qualità globale. Le caratteristiche organolettiche del vino in purezza del presunto clone A, nell'indagine presente, sono risultate peggiorate in modo lineare al diminuire della sua presenza nell'assemblaggio.

Dalla significatività del risultato, evidenziata dall'errore standard riportato in fig. 3, emerge che, a prescindere che l'assemblaggio sia eseguito con il vino B o C, la gradevolezza globale risulta sempre inferiore al vino base A.

Il vino del presunto clone B sembra alquanto indifferente all'assemblaggio con gli altri due vini se si esclude il caso in cui esso venga assemblato con il 70% e 20% rispettivamente dei vini A e C.

Poiché l'elevarò errore standard minimizza le possibili differenze fra le combinazioni testate, è chiaro che in questo caso la presenza nell'assemblaggio di vino A piuttosto che C riveste un ruolo determinante. Il vino tipo C (fig. 3), invece, risulta in tutti i casi significativamente migliorato dalla sua unione con gli altri vini A o B essi siano.

In particolare il salto di qualità si manifesta chiaramente quando la percentuale del vino del clone C è minore o uguale a 25%.

Conclusioni

La presente indagine esemplifica un possibile approccio statistico-sensoriale capace di contribuire alla solu-
zione della complessa problematica legata alla gestione della variabilità clonale.

È noto infatti che diversi cloni possono essere caratterizzati da peculiarità agronomiche e edologiche che ne definiscono la qualità intrinseca (Falcetti et al., 1991; Campanini et al., 1993), ma - considerando che una buona parte della qualità del vino è legata alla complessità del suo profile organolettico - appare evidente l'importanza di ottimizzare il contributo percentuale dei diversi cloni a caratteristiche complementari. Nell'ipotesi dell'esistenza di differenze fra uvaaggio e taglio, tale ottimizzazione potrebbe essere ricercata già al momento dell'impianto di vigneti razionali e qualitativamente validi. La tecnica dell'assemblaggio dei vini eseguita in maniera codificata ha dato, come in altri casi (Iacono et al., 1992), risultati estremamente positivi ed applicativi.

Da una parte si è confermato, se non era ancora bisogno, che l'analisi sensoriale eseguita con schede narrative correttamente stilate consente di stimare con sufficiente significatività il giudizio di tipicità o di gradevolezza globale, che dato a seconda del piano non consente di stabilire legami fra singoli descrittori e qualità.

Dall'altra parte, si è riscontrato che esiste una forte interazione anche nella definizione qualitativa dei prodotti ottenuti in diversi assemblaggi.

La presenza indicativa ha determinato infatti che il vino prodotto dal presunto clone A conferisce sempre superiori garanzie di maggiore qualità.

Considerando però che i risultati qualitativi dei singoli cloni sono influenzati anche da un'area limitata ed un'assenza di coltivazione, dal terzo della stagione vegetativa, la presenza di più cloni nel medesimo vigneto consente di garantire una maggiore costanza di qualità negli anni.

Riferendosi ai risultati qui presentati, quindi, nonostante il vino prodotto dal presunto clone A sia risultato il più gradevole, l'assemblaggio istituito dai 70% del vino A, 10% del clone B e 20% del vino C è certamente quello che garantirebbe una soddisfacente qualità relativamente protetta dall'influenza del decorso dell'anno di produzione. Questa combinazione si avvantaggia infatti della freschezza (Fruttato) del vino C, del gusto (sapore) del vino B e della struttura-coloro, (florale-speziativo e complessità globale) del vino A.

La non additività delle caratteristiche organolettiche intrinseche di ogni clone consente di eseguire schemi di impianto di migrazione come quello proposto nel presente lavoro per identificare, anche se in modo empirico, come sia possibile migliorare con un impianto policlono le potenzialità di uno specifico vigneto.

BIBLIOGRAFIA
RIASSUNTO
I vini ottenuti dalla vinificazione separata di 3 presunti cloni di Vigneto Gentile coltivati nella zona di Montepulciano, sono stati differenziatamente ottenuti fra loro secondo uno schema preparato a priori. I vini sono stati analizzati sensorialmente mediante una scheda descrittiva non parametrica e i dati ottenuti sono stati elaborati mediante Analisi fattoriale. Il giudizio di gradevolezza globale è risultato significativamente correlato con 4 dei fattori estratti.
I diversi assemblaggi hanno presentato caratteristiche organolettiche significativamente diverse.
L'impianto policlono, mediante passo di misurazione secondario, consente un ottenere un rapporto vitigno-ambiente annato di coltivazione al più alto livello qualitativo dei vini.
SUMMARY
Improvement of sensorial characteristics of wines obtained from plurivinal vineyards
The wines obtained from the vinification of 3 presumed clones of Pinot Noir variety cultivated in the area of Montepulciano (Italy), have been obtained in a different way blended according to a priori prepared scheme. The wines have been tasted by a not parametric descriptive card and data have been statistically processed by Factorial Analysis. The judgement of agreeableness was significantly correlated to 4 extracted factors. The different blends showed significantly different organoleptic characteristics.
The vineyards performed with several clones, according to data here reported, allow to optimize the relationship among variety, environment and year up to the highest wine quality score.

NEVINI - N. 12 - 1993

63