

DIFFA23

DIRECT INJECTION FOOD FLAVOUR ANALYTICS

BOOK OF ABSTRACTS

Fondazione Edmund Mach San Michele all'Adige (TN), Italy 20 - 22 September 2023

1st International Symposium on Direct Injection Food Flavour Analytics (DIFFA)

Edited by Research and Innovation Centre Fondazione Edmund Mach Via Mach, 1 38010 San Michele All'Adige (TN) Italy phone +39 0461615427 fax +39 0461650872 www.fmach.it ISBN 9788878430600

Proceedings of the DIFFA23 - 1st International Symposium on Direct Injection Food Flavour Analytics

Fondazione Edmund Mach – San Michele All'Adige (TN) Italy 20-22 September 2023

This book collects the conference proceedings of the 1st International Symposium on Direct Injection Food Flavour Analytics, held at the Fondazione Edmund Mach from 20th to 22nd September 2023.

SCIENTIFIC COMMITTEE

Franco Biasioli - Chair Fondazione Edmund Mach, Italy

Jonathan Beauchamp

Fraunhofer Inst. Process Engineering and

Packaging IVV, Germany

Pat Silcock University of Otago, New Zealand

Giuliana Bianco University of Basilicata, Italy

Emanuela Gregori Istituto Superiore di Sanità, Italy

Paola Montoro University of Salerno, Italy

Donatella Caruso University of Milano, Italy

Riccardo Flamini Crea-VE, Conegliano, Italy

Gianluca Giorgi University of Siena, Italy

Fulvio Magni University of Milano Bicocca, Italy

Luciano Navarini Illycaffè, Trieste, Italy

ORGANIZING COMMITTEE

Emanuela Betta Fondazione Edmund Mach, Italy

Franco Biasioli Fondazione Edmund Mach, Italy

Andrea Dell'Olio Fondazione Edmund Mach, Italy

Iuliia Khomenko Fondazione Edmund Mach, Italy

Martina Moretton Fondazione Edmund Mach, Italy

Michele Pedrotti Fondazione Edmund Mach, Italy

Flaminia Vincenti Sapienza University of Roma, Italy

Maria Assunta Acquavia - Secretary University of Basilicata, Italy

TA	RI	Æ	OF	CC	N	TE	!N	ITS	3

FOREWORD	1
CONFERENCE PROGRAM	3
LIST OF CONTRIBUTIONS	11
ABSTRACTS	17
LIST OF AUTHORS	187

FOREWORD

Volatile organic compounds (VOCs), particularly flavour compounds, represent an invaluable noninvasive metric to follow the multi-faceted journey of food, from the farm to the fork and beyond, such as relating to the human microbiome after consumption or in addressing reduction strategies for food waste. VOCs thereby serve as a direct and swift means of measurement and notably act as a main driver of the perceived quality of food.

Mass spectrometry (MS) is an established yet increasingly pivotal tool in food and beverage characterization with a broad range of applications. When coupled with gas chromatography (GC), it stands as the predominant analytical method for exploring many aspects of food, from safety to traceability and nutritional aspects, and equally facilitates control measures in quality and process monitoring.

Recent remarkable advancements in both technology and methodology have paved the way for highly sensitive, specific, rapid, robust, and validated MS-based techniques that have become indispensable in food science and technology research and application. A subgroup of these technologies has been devised over the past two decades in the form of analytical approaches that enable the analysis of VOCs through direct injection. These methods have gained attention for their rapid, highly sensitive and high-throughput analytical capabilities.

A leading technology in this area is proton transfer reaction-mass spectrometry (PTR-MS), which has driven many innovative applications for direct flavour/food analysis. Commencing 2003, the University of Innsbruck, Austria, has organized a biennial event dedicated specifically to PTR-MS and its applications, including a focused session on food science and technology.

The 1st International Symposium on Direct Injection Food Flavour Analytics (DIFFA23) was conceived with the backdrop of the PTR-MS conference but with a different aim, namely to embrace a broader community beyond PTR-MS uses, encompassing similar direct injection mass spectrometry (DIMS) technologies, such as atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) and selected ion flow tube-mass spectrometry (SIFT-MS), with a primary emphasis on flavor compounds. It was also not exclusive to MS-based analytical techniques, but welcomed the inclusion of complementary non-MS approaches, such as solid-state sensors, fast gas chromatographic direct approaches and ion mobility spectrometry (IMS), amongst others, to ensure a wider reach and broader engagement. The meeting was established to foster scientific discussions of common interest and facilitate scientific collaborations. This book of abstract highlights the details of the event and contains the contribution summaries of both the oral and poster presentations.

The conference featured one plenary and four keynote lectures delivered by distinguished guests, as well as numerous invited and contributed talks and 25 poster presentations, with 97 attendees from different EU states, the USA, the UK, Israel and New Zealand. The event provided valuable insights into direct injection food/flavour analytics, with reviews from pioneering scientists who played key roles in developing and advancing DIMS methods in its early days, such as Andy Taylor, Patrik Španěl and Jean-Luc Le-Quéré, showcasing both historical developments and recent advancements in analytical performance and novel applications. Topics discussed included nose-space analysis of composite foods, rapid and high-throughput phenotyping, fermentation monitoring, both as an

DIFFA23 - 1st International Symposium on Direct Injection Food Flavour Analytics

innovative technological tool and for investigating the human microbiota, advanced data analysis and data mining tools. These are just a few examples of the themes explored during the conference.

Numerous partners contributed to the success of the event: the sponsors, whose engaging presentations and financial support sustained the quality of the meeting and ensured that the conference fees were kept to a minimum, as well as various supporting institutions and patronages. Special thanks go to the Fondazione Edmund Mach (FEM) for its scientific contributions and for hosting the conference at the Research and Innovation Centre, as well as the Division of Mass Spectrometry of the Italian Chemistry Society (DSM-SCI) for their organizational support and creation and hosting of the conference website. The invaluable support from these companies and institutions are further acknowledged through inclusion of their logos on the back cover of this book.

The conference started a fruitful exchange of results, ideas and issues amongst scientists working with direct tools to monitor VOCs in food science and technology, with broad attendance from sensory and applications scientists from academia and industry.

We would like to thank all those who, through their participation and support, made this event possible, which exceeded our most ambitious expectations.

Thank you all, and we look forward to seeing you at the next edition.

On behalf of the Scientific Committee

Franco Biasioli, Jonathan Beauchamp, Pat Silcock

CONFERENCE PROGRAM

20th September 2023

12.30-14.00 Registration and welcome buffet

Conference opening

Welcome addresses
Fulvio Magni - Società Chimica Italiana-Divisione Spettrometria di Massa
Mario Pezzotti - Fondazione Edmund Mach
Why DIFFA23?
Franco Biasioli - Fondazione Edmund Mach
Plenary lecture: <i>DI-MS – A game changer for flavour research?</i>
Andy Taylor - University of Nottingham

$Session \ 1 \ | \ Unlocking \ Flavour \ with \ DIMS$

Chairs: Pat Silcock & Nina Cleve

15.05-15.35	Jonathan Beauchamp - Fraunhofer Institute for Process Engineering and Packaging IVV
	The long and winding road: a flavoursome tale of PTR-MS
15.35-15.55	Graham Eyres - University of Otago
	What is Flavour and how can DIMS help untangle the puzzle?
15.55-16.15	Andreas Mauracher - IONICON
	Advantages of Next-Gen PTR-ToF instruments for food and flavour sciences

16.15-17.00 Tea break and poster session

Session 2 | DIMS in Health and Wellbeing

Chairs: Donatella Caruso & Eirini Pegiou

17.00-17.20	Josep Rupert - Wageningen University & Research
	Signalling volatile compounds in the human gut microbiota: new avenues offered by direct analytical methods.
17.20-17.40	Chris Mayhew - University of Innsbruck
	Real-Time Trace Analysis of Breath Volatiles using Proton Transfer Reaction Mass Spectrometry: implications for in-vivo flavour release measurements
17.40-18.00	Enrico Davoli - Istituto Mario Negri
	Direct analysis of sex-wellness products using a field deployable MS equipped with a Direct Sampling Atmospheric Pressure (DSAP) source
18.00-18.20	Corrado Di Natale - University of Rome Tor Vergata
	Direct injection mass spectrometry and gas sensors: a teacher-pupil relationship
18.20-18.40	Luca Cappellin - University of Padua
	Improved compound identification in direct VOC analysis using an EI&CI-TOFMS

19.00 Welcome cocktail - cloister of the monastery and historical cellar

21st September 2023

Session 3 | Linking DIMS Data to Sensory Perception

Chairs: Graham Eyres & Iuliia Khomenko

9.00-9.30	Jean-Luc Le-Quéré - INRAE-CSGA Dijon
	Twenty years of Direct Injection Mass Spectrometry for aroma research in Dijon
9.30-9.50	Catrienus De Jong - Wageningen University & Research
	Exploring new in vivo and in vitro methods to integrate sensory and instrumental analysis to get insight and improve the flavour of plant-based food products during oral processing and drinking
9.50-10.10	Markus Stieger - Wageningen University & Research
	In vivo aroma release and sensory perception of composite foods
10.10-10.20	Michele Pedrotti - Wageningen University & Research
	Characterization of plant-based milks by combining sensory analysis with headspace and nose-space direct injection mass spectrometry
10.20-10.30	Karina Gonzalez-Estanol - Wageningen University & Research
	In vivo analysis of nose-space concentration by direct injection mass spectrometry to study the effect of chewing rate on aroma release during food consumption
10.30-10.40	Laura Hill - University of Nottingham
	Understanding the relationship between lipids, capsaicin and aroma release in confectionery
	1

10.40-11.10 Coffee break and poster session

Session 4 | Flavour Complexity and Cooking

Chairs: Fulvio Magni & Caroline Perltier

11.10-11.30	Samo Smrke - ZHAW School of Life Sciences and Facility Management
	Development of fast-GC PTR-MS method for coffee VOCs analysis
11.30-11.45	Nina Cleve - Fraunhofer Institute for Process Engineering and Packaging IVV
	Milk matters: Unraveling retronasal aroma release and perception of coffee by combining in vivo nosespace analytics with dynamic sensory methods
11.45-12.05	Tomasz Majchrzak - Gdansk University of Technology
	What happens when food goes into oil during deep frying? Monitoring the first minutes of frying using PTR-MS
12.05-12.20	Gregory Schmauch - Rational F&E GmbH
	Influence of product quantity, cooking parameter and flow tube pressure on the measurement with Sift-MS in a cooking oven
12.20-12.40	Vaughan Langford - Syft Technologies
	Application of SIFT-MS to chemical and sensory screening of packaging materials

12.40-14.00 Conference group photo and lunch

Session 5 | Latest DIMS Showcasing

Chairs: Jonathan Beauchamp & Karina Estanol-Gonzalez

14.00-14.15	Terry Bates - Cornell University
	Rapid headspace solid-phase microextraction with sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile phenols in grape juices and wines
14.15-14.30	Matteo Tonezzer - University of Cagliari
	PTR-MS as a tool to understand and improve the performance of electronic noses
14.30-14.45	Andrea Warburton - University of Otago
	Application of PTR-ToF-MS to monitor development of flavour in sourdough
14.45-15.05	Paolo Redegalli - Shimadzu Italia S.r.l.
	Characterization of isoflavones and its metabolites in foods by direct probe ionization mass spectrometer (DPiMS) with high resolution detection
15.05-15.25	Hansruedi Gygax - GAS Dortmund
	GC-IMS instruments and their use in food and flavour analysis

15.25-16.15 Tea break and poster session

Session 6 | Microbial, Fermentation and Modelling

Chairs: Riccardo Flamini & Michele Pedrotti

16.15-16.45	Pat Silcock - University of Otago
	The use of DIMS to understand microbially induced flavour changes
16.45-17.05	Vittorio Capozzi - Institute of Sciences of Food Production - National Research Council of Italy (CNR)
	DIMS techniques and the study on microbial VOCs in food: flavour attributes, fermentation monitoring and emerging trends
17.05-17.20	Eirini Pegiou - Wageningen University & Research
	Easy and fast detection of abnormal olive brine fermentation – A showcase of SPOTDETECT.
17.20-17.40	Caroline Peltier - INRAE
	Automatic pretreatment and multiblock analysis of flavor release and sensory temporal data simultaneously collected in vivo
17.40-18.00	Ana Rita Monforte - AFB INTERNATIONAL
	Modelling the kinetics of flavour formation & relaese as a function of ingredients addition in real food systems
18.00-18.20	Pietro Franceschi - Fondazione Edmund Mach
	Mining datasets from untargeted direct analytical methods: a data analyst point of view
18.20-18.35	Mickael Le Bechec - Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM)
	Volatile fingerprints of food thanks to the untargeted use of SIFT-MS raw data

20.00 Social dinner - cloister of the Museo Etnografico Trentino

22nd September 2023

Session 7 | Food Spoilage and Off-Flavour

Chairs: Catreinus de Jong & Brian Farneti

9.30-10.00	Patrik Španěl - J. Heyrovský Institute of Physical Chemistry
	Progress in Selected Ion Flow Tube Mass Spectrometry, SIFT-MS, analyses of food flavour, freshness and spoilage
10.00-10.15	Antonella Grosso - University of Bolzano
	Monitoring autoxidation of vegetable oils by proton transfer reaction mass spectrometry
10.15-10.30	Pedro Martinez Noguera - University of Copenhagen
	Using PTR-ToF-MS to quantify microbial off-flavors geosmin and 2-methylisoborneol in water. Method development, performance assessment and comparison with established GC-MS methods
10.30-10.45	Davide Papurello - Turin Polytechnic
	Supporting sustainable energy production by PTR-MS: a review on the work accomplished on biofuel production from food waste to SOFC systems
10.45-11.05	Rupert Holzinger - Utrecht University
	Using SI traceable gas standards to improve the accuracy of untargeted PTR-MS measurements

11.05-11.45 Coffee break and Poster Session

Session 8 | Floral, Biogenics and Phenotyping

Chairs: Rupert Holzinger & Vittorio Capozzi

11.45-12.05	Štefan Matejčík - Comenius University
	Ion mobility spectrometry detection of plant hormones
12.05-12.25	Brian Farneti - Fondazione Edmund Mach
	DI-MS as high performing VOC phenotyping tool to support the horticultural production chain management
12.25-12.40	Alberto Roncone - Fondazione Edmund Mach
	Validation of gas chromatographic methods for the botanical characterization and authentication of lavender essential oil by stable isotope analysis of its organic volatile compounds
12.40-12.55	Eugenio Aprea - University of Trento
	Contribution of volatile organic compounds to multifloral honey flavor
12.55-13.15	Daniele Zatta - University of Padua
	Comparative analysis of VOC purification techniques in complex cooking emission: adsorption, photocatalysis and combined systems.
13.15-13.30	Closing remarks
	Fulvio Magni - Società Chimica Italiana-Divisione Spettrometria di Massa
	Franco Biasioli - Fondazione Edmund Mach

13.30 Farewell buffet

LIST OF CONTRIBUTIONS

Plenary	Lecture	Pag
PL.01	DI-MS – A game changer for flavour research? <u>Andy Taylor</u>	17
Keynote	Speakers	
K.01	The long and winding road: a flavoursome tale of PTR-MS Jonathan Beauchamp	20
K.02	Twenty years of Direct Injection Mass Spectrometry (DIMS) for aroma research in Dijon Jean-Luc Le Quéré	22
K.03	The use of DIMS to understand microbially induced flavour changes Patrick Silcock	24
K.04	Progress in Selected Ion Flow Tube Mass Spectrometry, SIFT-MS, analyses of food flavour, freshness and spoilage <u>Patrik Španěl</u>	25
Invited S	Speakers	
I.01	What is Flavour and how can DIMS help untangle the puzzle? <i>Graham T. Eyres</i>	27
I.02	Signaling volatile compounds in the human gut microbiota: new avenues offered by direct analytical methods Rubert Josep, Dell'Olio Andrea, Fogliano Vincenzo, Khomenko Iuliia, Betta Emanuela, Capozzi Vittorio, Biasioli Franco	28
I.03	Real-Time Trace Analysis of Breath Volatiles using Proton Transfer Reaction Mass Spectrometry: implications for <i>in-vivo</i> flavour release measurements <u>Chris A. Mayhew</u>	30
I.04	Direct injection mass spectrometry and gas sensors: a teacher-pupil relationship Rosamaria Capuano, Alexandro Catini, <u>Corrado Di Natale</u>	32
1.05	Exploring new <i>in vivo</i> and <i>in vitro</i> methods to get insight and improve the flavour release of plant-based food products during oral processing <u>Catrienus de Jong</u> , Rene de Wijk, Valentina Acierno, Rita Boerrigter-Eenling	34
I.06	In vivo aroma release and perception of composite foods using nose space PTR— ToF—MS analysis with Temporal-Check-All-That-Apply Karina Gonzalez-Estanol, Iuliia Khomenko, Danny Cliceri, Franco Biasioli, Markus Stieger	35
I.07	Development of Fast-GC PTR-MS Method for Coffee VOCs Analysis <u>Samo Smrke</u> , Oliver Lipp, Nicolas Wernli, Chahan Yeretzian	36
I.08	What happens when food goes into oil during deep frying? Monitoring the first minutes of frying using PTR-MS.	38

I.09	Rohmah Nur Fathimah, Muhammad Saad Arshad, Tomasz Majchrzak DIMS techniques and the study on microbial VOCs in food: flavour attributes,	41
	fermentation monitoring and emerging trends	
	Mariagiovanna Fragasso, Antonia Corvino, Martina Moretton, Iuliia	
	Khomenko, <u>Vittorio Capozzi</u>	
I.10	Automatic pre-treatment and multiblock analysis of flavor release and sensory	44
	temporal data simultaneously collected in vivo	
	<u>Caroline Peltier</u> , Michel Visalli, Hélène Labouré, Cantin Hélard, Isabelle	
	Andriot, Sylvie Cordelle, Jean-Luc Le Quéré, Pascal Schlich	
I.11	Modelling the kinetics of flavour formation & release as a function of ingredients	46
	addition in real food systems	
	Ana Rita Monforte, Sara Martins	
I.12	Volatile fingerprints of food thanks to the untargeted use of SIFT-MS raw data	47
	Mickael Le Bechec, Marine Reyrolle, Valérie Desauziers, Thierry Pigot, Gilles	
	Bareille, Sylvain Berail, Ekaterina Epova, Julien Barre, Lydia Gautier, Valérie	
	Chesneau	
I.13	Using SI traceable gas standards to improve the accuracy of untargeted PTR-MS	50
	measurements	
	Rupert Holzinger, Dusan Materic, Sebastien Dusanter, Sergi Moreno, David	
	Worton	
I.14	Ion mobility spectrometry detection of plant hormons	53
	Vahideh Ilbeigi, Younes Valdbeigi, Ladislav Moravský, <u>Štefan Matejčík</u>	
I.15	DI-MS as high performing VOC phenotyping tool to support the horticultural	56
	production chain management	
	Brian Farneti	
Sponsore	ed talk	
S.01	Advantages of Next-Gen PTR-TOF instruments for food and flavour sciences	58
	A. Mauracher, R.Gutmann, S. Feill, A. Jordan, J. Herbig, M. Müller, T.	
	Reinecke, P. Sulzer	
S.02	Improved compound identification in direct VOC analysis using an EI&CI-	60
	TOFMS	
	<u>Luca Cappellin</u> , Marleen Vetter, Christina Hinterleitner, Steffen Bräkling, Sonja	
	Klee	
S.03	Application of SIFT-MS to Chemical and Sensory Screening of Packaging	63
	Materials	
	Vaughan Langford, Mark Perkins	
S.04	Characterization of Isoflavones and Its Metabolites in Foods by Direct Probe	64
	Ionization Mass Spectrometer (DPiMS) with High Resolution Detection	
	Paolo Redegalli	
S.05	GC-IMS instruments and their use in Food and Flavour Analysis	67
	<u>Hansruedi Gygax</u> , Thomas Wortelmann	

S.06	Comparative analysis of VOC purification techniques in complex cooking	69
	Emission: adsorption, photocatalysis and combined systems.	
	Daniele Zatta, Mattia Segata, Franco Biasioli, Ottaviano Allegretti, Roberto	
	Verucchi, Francesco Chiavarini, Luca Cappellin	

Orals		
O.01	Direct analysis of sex-wellness products using a field deployable MS equipped with a Direct Sampling Atmospheric Pressure (DSAP) source	72
	Enrico Davoli, Alice Passoni, Claudio Medana, Enrica Mecarelli, Victor Laiko, Vladimir M. Doroshenko	
O.02	Characterization of plant-based milks by combining sensory analysis with	74
	headspace and nose-space direct injection mass spectrometry	
	Michele Pedrotti, Puneet Mishra, Christian Wintermeyer, Lars Grohmann,	
0.02	Annika Volle, Sylvia Barnekow, Theo Verkleij	76
O.03	<i>In vivo</i> analysis of nose-space concentration by direct injection mass spectrometry to study the effect of chewing rate on aroma release during food consumption	76
	Karina Gonzalez-Estanol, Michele Pedrotti, Monica Fontova-Cerda, Iuliia	
	Khomenko, Franco Biasioli, Markus Stieger	
O.04	Understanding the relationship between lipids, capsaicin and aroma release in	78
	confectionery	
	Laura Hill, Lewis Jones, Katrin Pechinger, Ni Yang	
O.05	Milk matters: Unraveling retronasal aroma release and perception of coffee by combining <i>in vivo</i> nosespace analytics with dynamic sensory methods	81
	Nina Cleve, Karina Gonzalez-Estanol, Iuliia Khomenko, Luca Cappellin,	
	Jonathan Beauchamp, Franco Biasioli	
O.06	Influence of product quantity, cooking parameter and flow tube pressure on the measurement with Sift-MS in a cooking oven	85
	<u>Grégory Schmauch</u> , Eugen Engelmann	
O.07	Rapid headspace solid-phase microextraction with sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile	87
	phenols in grape juices and wines	
	Terry L. Bates, Gavin Sacks	
O.08	PTR-MS as a tool to understand and improve the performance of electronic noses	89
0.00	Matteo Tonezzer Application of DTD, ToE MS to manifer development of flevour in courdough	90
O.09	Application of PTR-ToF-MS to monitor development of flavour in sourdough. <i>Andrea Warburton, Graham Eyres, Pat Silcock</i>	90
O.10	Easy and fast detection of abnormal olive brine fermentation – A showcase of	93
0.10	SPOTDETECT	,,,
	Eirini Pegiou, Maxence Paillart, Yannick Weesepoel	
O.11	Mining datasets from untargeted direct analytical methods: a data analyst point	96
	of view	
	<u>Pietro Franceschi</u>	

O.12	Monitoring autoxidation of vegetable oils by Proton Transfer Reaction Mass Spectrometry Antonella L. Grosso, Ksenia Morozova, Giovanna Ferrentino, Matteo	97
O.13	Scampicchio Using PTR-ToF-MS to quantify microbial off-flavors geosmin and 2-methylisoborneol in water. Method development, performance assessment and comparison with established GC-MS methods. Pedro Martínez Noguera, Sylvester Holt, Raju Podduturi, Wender L.P. Bredie,	100
O.14	Jonathan Beauchamp, Mikael A. Petersen Supporting sustainable energy production by PTR-MS: a review on the work accomplished on biofuel production from food waste to SOFC systems Davide Papurello, Silvia Silvestri	103
O.15	Validation of gas chromatographic methods for the botanical characterization and authentication of lavender essential oil by stable isotope analysis of its organic volatile compounds	111
0.16	Alberto Roncone, Purna K. Khatri, Mauro Paolini, Roberto Larcher, Luca Ziller, Dana Alina Magdas, Olivian Marincas, Luana Bontempo Contribution of volatile organic compounds to multifloral honey flavor Eugenio Aprea, Danny Cliceri, Emanuela Betta, Flavia Gasperi	113
Posters		
P.01	Effect of different carbon sources on fermentation volatile organic compounds (VOCs) profile by <i>Levilactobacillus brevis</i> WLP672 using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) <u>Sarathadevi Rajendran</u> , <i>Iuliia Khomenko</i> , <i>Patrick Silcock</i> , <i>Emanuela Betta</i> , <i>Franco Biasioli</i> , <i>Phil Bremer</i>	116
P.02	"Mild" Extra Virgin Olive Oil: evolution of the volatile profile during storage <u>Benedetta Fanesi</u> , Deborah Pacetti, Erica Moret, Paolo Lucci, Lanfranco Conte, Mauro Amelio	119
P.03	PTR-ToF-MS as a high sensitivity sensor for online monitoring of lacto- fermentation in plant-based beverages Antonia Corvino, Maria Mazzucotelli, Iuliia Khomenko, Vittorio Capozzi	122
P.04	Sensor Array for alcoholic bevarages discrimination <u>Lai Van Duy</u> , Rosamaria Capuano, Alexandro Catini, Nguyen Van Duy, Nguyen Duc Hoa, Matteo Tonezzer, Corrado Di Natale	126
P.05	Human Volatilomics with GC/IMS Rosamaria Capuano, Alexandro Catini, <u>Corrado Di Natale</u>	129
P.06	Volatile compounds of natural vanilla-extract and stable isotope ratio analysis of carbon and hydrogen of vanillin and ethyl vanillin: Validation of a GC-IRMS analytical method <u>Long Chen</u> , Purna K. Khatri, Mauro Paolini, Roberto Larcher, Luca Ziller, Luana Bontempo	131

P.07	Characterization of fresh and oxidized coriander seed oil volatilome by using PTR-MS	134
	<u>Antonella L. Grosso</u> , Katerina Sasinova, Giovanna Ferrentino, Matteo Scampicchio	
P.08	Automated untargeted peak detection for GC-IMS data	137
D 00	Maria Mazzucotelli, Pietro Franceschi	100
P.09	Application of conventional and rapid analytical strategies for hazelnut volatilome characterization	139
	Maria Mazzucotelli, Pietro Franceschi, Iuliia Khomenko, Brian Farneti,	
	Emanuela Betta, Elena Gabetti, Luca Falchero, Andrea Cavallero, Eugenio	
D 10	Aprea Proliminary concening of alderly out migraphiete metabolites of mean protein angien	1.40
P.10	Preliminary screening of elderly gut microbiota metabolites of pea protein enrich- bread	142
	Martina Moretton, Monica Anese, Edoardo Capuano, Nicoletta Pellegrini	
P.11	Tailoring dietary intervention based on PTR-ToF-MS rapid pre-clinical screening	145
1.11	<u>Andrea Dell'Olio</u> , Josep Rubert, Vincenzo Fogliano, Vittorio Capozzi, Iuliia	17.
	Khomenko, Martina Moretton, Franco Biasioli	
P.12	Characterization of key aroma compounds during black garlic production: GC-	147
	MS analyses and SIFT-MS quantification	
	Kseniya Dryahina, Emre Turan, Nikola Sixtova, Gülşah Özcan Sinir, Atilla	
	Şimşek, Patrik Španěl	
P.13	PTR-ToF-MS VOC's profiling and monitoring of Red Delicious and Granny	150
	Smith apples	
	Alessia Panarese, Iulia Khomenko, Brian Farneti, Franco Biasioli, Angelo	
	Zanella	
P.14	PTR-MS applications inside the SISTERS project – Preventing food loss and	153
	waste of fresh vegetables by monitoring quality decay through VOCs emissions	
	<u>Pedrotti Michele</u> , Emanuela Betta, Khomenko Iuliia	
P.15	PTR-Tof-MS analyses as a high-throughput volatilome phenotyping technique in	156
	a Genome Wide Association study of an almond germplasm collection	
	Leonardo Luca*, <u>Brian Farneti</u> , Iulia Khomenko, Mario Di Guardo, Stefano La	
D 16	Malfa, Alessandra Gentile, Franco Biasioli, Gaetano Distefano	1.55
P.16	Volatile organic compounds: a potential marker for early detection of kiwifruit	157
	Storage Breakdown Disorder (SBD)	
	Andrea Strano, Brian Farneti, Iulia Khomenko, Emanuela Betta, Franco	
P.17	Biasioli, Francesco Spinelli Evaluation of flavour release and perception from sugar-free chewing gum using	161
Г.1/	APCI-MS and temporal sensory profiling	101
	Jing Feng, Gary Gray, Rebecca Ford, Ni Yang	
P.18	Emission of volatile organic compounds from wild mushrooms and coffee using	164
1.10	proton transfer reaction mass spectrometry	10-
	T. Wróblewski, A. Kamińska, A. Włodarkiewicz, D. Ushakou, <u>G. Karwasz</u>	
P.19	Direct-Mass Spectrometry in wine analysis	167
-	Annarita Paniahal Mirko Da Rosso	

DIFFA23 - 1st International Symposium on Direct Injection Food Flavour Analytics

P.20	High-throughput automatic cooking, analysis, and data mining of food matrices	169
	by PTR-ToF-MS	
5.4 4	<u>Iuliia Khomenko</u>	
P.21	Influence of the model cheese composition on the aroma content, release and	171
	perception	
	<u>I. Andriot</u> , C. Septier, C. Peltier, P. Barbet, R. Palme, C. Arnould, S. Buchin, C. Salles	
P.22	Dynamic production of standards gases with liquid & online monitoring with	173
	VOCUS CI TOF at ppb level	
	L. Damont, L. Cossard, T. Bruderer	
P.23	Relevance of VOCs in microbial cross-over: the potential of DIMS in assisting	176
	new product development	
	Mariagiovanna Fragasso, Hülya Cunedioğlu, Antonia Corvino, Ester Presutto,	
	Andrea Dell'Olio, Giuseppe Spano, Vittorio Capozzi	
P.24	Real time MS nose space monitoring allows to get insights into biological and	178
	behavioral factors affecting the inter-individual variability on flavor release	
	Leonardo Menghi, Iuliia Khomenko, Michele Pedrotti, Danny Cliceri, Eugenio	
	Aprea, Isabella Endrizzi, Franco Biasioli, Flavia Gasperi	
P.25	Stable isotope ratio analysis for the authentication of organic wheat, pasta and	181
	bakery products	
	Zoe Giannioti, Alberto Roncone, Michele Suman, Luana Bontempo	
P.26	Venezuelan stingless bee Tetragonisca angustula (Latreille, 1811) pot-pollen and	183
	cerumen pollen pot Volatile Organic Compound VOC profiles by HS-	
	SPME/GC-MS	
	Emanuela Betta, Ricardo R Contreras, Enrique Moreno, Silvia RM Pedro, Iuliia	
	Khomenko, <u>Patricia Vit</u>	

P.03 PTR-ToF-MS as a high sensitivity sensor for online monitoring of Lacto-fermentation in plant-based beverages

Antonia Corvino^{1,2*}, Maria Mazzucotelli^{1,2}, Iuliia Khomenko¹, Vittorio Capozzi³

¹Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy.

²Center for Agriculture Food Environment C3A, University of Trento, Trento, Italy.

³National Research Council of Italy - Institute of Sciences of Food Production (ISPA) c/o CS-DAT, Foggia, Italy.

*antonia.corvino@fmach.it

Summary: Fermentation is a sustainable process aimed at preserving and enhancing the overall quality of the final product. The advantages offered by this bioprocess can be effectively combined with those provided by PTR-ToF-MS sensor, thereby expediting innovation within this rapidly advancing industry. In this study, PTR-ToF-MS allowed the automatic, real-time, direct, and non-invasive monitoring of *Lactiplantibacillus plantarum* volatilome during the fermentation of different plant-based beverages. Furthermore, PTR-based sensors can facilitate new product development and design, rapidly screening the different matrix- microorganism combinations.

Keywords: PTR-TOF-MS, plant-based beverages, fermentation

1 Introduction

The fermented beverage market has become an important sector in the food industry in the past decade, with various traditional and innovative products and sustainable bio-based solutions. The market demands require a significant diversification of the range of products (e.g. new flavours, plantbased options, ready-to-use products, label cleaning, by-products/waste reuse, and personalised nutrition), and for these reasons, the fermented beverage industry aims to continuously modulate and improve the nutritional, functional, and sensory quality of final products. To meet new consumer needs and enhance acceptability, innovative trends in this area required the exploration of numerous variables, such as changing raw materials, fermentative strategies, exploited microbes, and technological processes [1]. From this perspective, sensor-based approaches can be crucial in ensuring versatile control solutions, accelerating innovation dynamics, and contributing to design strategies to satisfy consumer perception in this dynamic sector [2]. In this context, volatile organic compounds (VOCs), responsible for odour and flavour perception, can be considered interesting targets as biomarkers to track microbial metabolism during fermentation bioprocesses, providing information on the quality of the matrices. Among the sensors that found application to monitor VOCs in the food and beverage sector, DIMS (Direct injection mass spectrometric) techniques have been receiving increasing interest, combining versatility, real- time analysis and good analytical performances [3]. In particular, Proton-transfer-reaction, coupled with Time-of-Flight Mass Spectrometer (PTR-ToF-MS), represents a good model of DIMS technologies in consideration of the relevant sensitivity and accuracy features together with time-saving, non-invasive and eco-friendly analysis [4]. PTR-ToF-MS measurements permit the assessment and monitoring of VOCs i) during the fermentation processes to track their evolution and potential reaction kinetics and ii) on final products to provide information on possible consumer sensory experience/product quality. This instrumental analytical technique is a green alternative tool for volatilome profiling during food fermentations. In the present work, PTR- ToF-MS was used for the online monitoring of lactic fermentation in plant-based beverage inoculating, as a single culture, *Lactiplantibacillus plantarum* WCFS1, a well-studied strain belonging to this versatile facultative heterofermentative species of lactic acid bacteria (LAB) found in different matrices and the gastrointestinal tract [5]. This preliminary investigation also aims to develop a PTR-based strategy to build a reference framework for developing and designing fermented beverages.

2 Experimental

Nine plant-based beverages (soy, oat, almond, apple, bergamot, blueberry, carrot, beetroot and tomato) were purchased, and the milk was included as a model beverage of animal origin. Fermentations were performed inoculating at concentrations of 1×10^6 cfu/mL (colony-forming units per milliliter) of *Lactoplantibacillus plantarum* WCFS1 in 3 ml of beverage at 37 °C for 72 h. Each fermentation experiment was carried out by performing three simultaneous independent repetitions for treatment (fermented with *L. plantarum* WCFS1 and non- fermented/uninoculated as control). VOCs produced during fermentation were measured every 4 h by direct injection of the headspace mixture into a commercial PTR-ToF-MS 8000 apparatus (Ionicon Analytik GmbH, Innsbruck, Austria). Measurements were performed in an automated way by using a multipurpose GC automatic sampler (Autosampler, Gerstel GmbH, Mulheim am Ruhr, Germany) as described in [6]. All data detected and recorded by the PTR- ToFMS were processed and analysed using MATLAB R2017a (MathWorks Inc., Natick, MA, USA) and R (R Foundation for Statistical Computing, Vienna, Austria). Principal component analysis, analysis of variance, and Tukey's post-hoc test were performed to spot the differences in the volatile aroma compounds emitted by the beverages.

3 Results

A preliminary data exploration has been made to visualise, through a principal component analysis (PCA), the results of the PTR-ToF-MS analysis of the original beverages as raw materials for the fermentations. The PCA plot in Figure 1 demonstrates that the first and second PCA components together explain 84.68% of the overall variability before fermentation. This plot highlights a clear distinction between milk-like beverages (such as soy, almond, and oat) that form a defined cluster and exhibit pronounced similarity to milk from the juices (bergamot, apple, blueberry, carrot, beetroot, and tomato). Based on these findings, two distinct PCA plots are conducted for the lactofermented milk-like beverages (Figure 2) and juices (Figure 3), respectively. In the Figure 2, poor evolution of the uninoculated milks is observed, while it is possible to follow the changes of variability in the time of the inoculated samples. Samples from the different matrices grouped well together, with only small and partial overlapping. In Figure 3, the trend of fermented and nonfermented juices is different, indicating that these two categories of juices have different characteristics and properties, as expected. The clustering patterns of bergamot juice differ from others, as well as apple juice. Additionally, both tomato, carrot, blueberry and beetroot juices exhibit similar trends, with less pronounced clustering by matrices. In the 'juice' experiment, the control/uninoculated samples also show an evolution in the time of VOCs, as the corresponding samples inoculated with L. plantarum WCFS1. In this light, it is possible to surmise the development of native microbes during the fermentative process. All the juices were pasteurised. Pasteurisation is a treatment that eliminates the vegetative form of pathogens but not the spore-forming bacteria. Hence, it is possible to suppose that bacterial spores germinate to start a bioprocess in the

uninoculated samples. After the aggregate analysis, tentative identification of the ions and a more detailed study of the evolution of selected peaks associated with different matrices and lactic fermentation was carried out.

4 Conclusion

This study reports a first characterisation of VOCs by means of DIMS in plant-based beverages originating from fruits, vegetables, cereals and legumes. The research underlined the potential of PTR-ToF-MS, combined with tailored data analysis, for the online monitoring of experimental variables associated with lactic acid fermentation in all plant-based beverages. Evidence has highlighted the possibility of assessing differences and similarities in volatile profile by distinguishing various fermented matrices based on their chemical and physical characteristics, as well as the preferred growth substrate for lactic acid bacteria. PTR-ToF-MS can be considered as a driver for new product development and novel foods design, starting from a preliminary evaluation of volatile compounds in raw matrices and in fermented products. The results also provide original findings on some metabolic changes over time when *L. plantarum* grows in plant substrates. Further investigations are needed to understand the genomic pattern associated with volatile production.

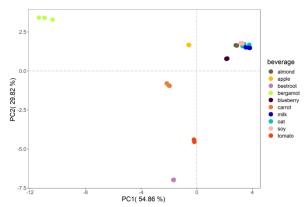


Figure 1. Score plot of the principal component analysis of VOCs emission before fermentation for each trial tested in this study. Data were logarithmically transformed and centered.

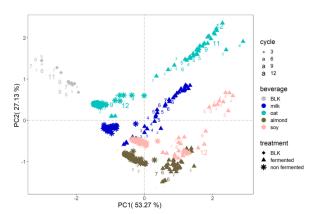
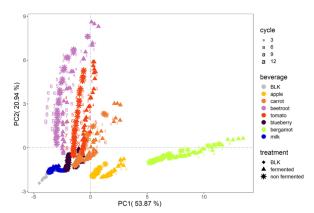



Figure 2. Score plot of the principal component analysis of VOCs emission from fermented and non-fermented milk—like beverages during 72 h of fermenetation process. Three replicates for beverage were tested in this study. Data were logarithmically transformed and centered.

Figure 3. Score plot of the principal component analysis of VOCs emission from fermented and non-fermented juices during 72 h of fermenetation process. Three replicates for beverage were tested in this study. Data were logarithmically transformed and centered.

References

- [1] V. Capozzi, S. Yener, I. Khomenko, B. Farneti, L. Cappellin, F. Gasperi, M. Scampicchio, F. Biasioli, PTR-ToF-MS coupled with an automated sampling system and tailored data analysis for food studies: bioprocess monitoring, screening and nose-space analysis, *JoVE J. Vis. Exp.* (2017) e54075.
- [2] M. Mazzucotelli, B. Farneti, I. Khomenko, K. Gonzalez-Estanol, M. Pedrotti, M. Fragasso, V. Capozzi, F. Biasioli, Proton transfer reaction mass spectrometry: A green alternative for food volatilome profiling, *Green Anal. Chem. 3* (2022) 100041.
- [3] F. Biasioli, C. Yeretzian, T.D. Märk, J. Dewulf, H. Van Langenhove, Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis, *TrAC Trends Anal. Chem. 30* (2011) 1003–1017.
- [4] L. Cappellin, F. Biasioli, P.M. Granitto, E. Schuhfried, C. Soukoulis, F. Costa, T.D. Märk, F. Gasperi, On data analysis in PTR-TOF-MS: From raw spectra to data mining, *Sens. Actuators B Chem.* 155 (2011) 183–190.
- [5] R.J. Siezen, C. Francke, B. Renckens, J. Boekhorst, M. Wels, M. Kleerebezem, S.A.F.T. van Hijum, Complete Resequencing and Reannotation of the Lactobacillus plantarum WCFS1 Genome, *J. Bacteriol.* 194 (2012) 195–196.
- [6] E.A. Di Pierro, P. Franceschi, I. Endrizzi, B. Farneti, L. Poles, D. Masuero, I. Khomenko, F. Trenti, A. Marrano, U. Vrhovsek, F. Gasperi, F. Biasioli, G. Guella, L. Bianco, M. Troggio, Valorization of Traditional Italian Walnut (*Juglans regia L.*) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region, *Plants. 11* (2022) 1986.