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A B S T R A C T   

Making oil palm agriculture as efficient as possible is essential to ensuring that this economically important crop 
can be grown sustainably. To determine how oil palm growth rates vary across tropical landscapes, we used 
repeat airborne LiDAR data to map the height growth of >500,000 oil palms in Malaysian Borneo over a two- 
year period coinciding with the 2015–16 El Niño drought. Despite uncharacteristically dry and hot weather 
conditions, oils palms grew an average of 1.6 m yr− 1 in height over this period. However, oil palm growth rates 
varied across the landscape and in relation to plant age, tending to be fastest for younger individuals growing 
closer to forest edges, further from rivers and at higher elevations. Our results highlight the ability of oil palms to 
grow even during periods of drought and showcase how cutting-edge remote sensing technologies can help 
improve the efficiency and sustainability of oil palm agriculture.   

1. Introduction 

African oil palm has earned some notable accolades – including ‘tree 
of life’, ‘wonder crop’ and ‘natures gift to man’ – as almost every part of the 
plant has a use (Gillespie, 2012; Okolo et al., 2019). Oil palms produce 
ten times more oil per hectare than their closest competitor, soybean 
(Mayes, 2020; Sumathi et al., 2008), making oil palm a key crop 
worldwide for the production of vegetable oil over the last century 
(Okolo et al., 2019). Nowhere is this truer than in parts of SE Asia (Brad 
et al., 2015), for instance Indonesia- where palm oil accounts for around 
10% of total national exports and is central to the livelihoods of 
countless people (Beyer et al., 2020). However, this rapid rise in the 
demand for oil palm has come at a huge environmental cost, with the 
growth of the oil palm industry leading to the large-scale conversion of 
regions of tropical forest into monoculture plantations. On the island of 
Borneo, over 3 million ha of primary forest were felled to clear space for 
oil palm agriculture between 2000 and 2017, with substantial impacts 
on biodiversity and carbon storage (Beyer et al., 2020; Dislich et al., 
2017; Gaveau et al., 2016; Koh and Wilcove, 2007; Qaim et al., 2020). It 
has been evidenced that oil palm plantations hold less than 50% of the 
vertebrate species of primary forests and hold far lower overall biodi-
versity than both primary and degraded secondary forests (Fitzherbert 

et al., 2008). This puts many of the ecosystem services provided by 
stable and diverse tropical landscapes at risk, compromising soil reten-
tion and nutrient cycling with adverse long-term impacts on the pro-
ductivity of the oil palm plantations themselves (Dhandapani et al., 
2019; Dislich et al., 2017). Moreover, intact tropical rainforests can hold 
as much as 270 tonnes more carbon per hectare than oil palm planta-
tions (Katayama et al., 2013; Khoon Kho et al., 2015; Sayer et al., 2012). 
Consequently, the continued expansion of oil palm agriculture is 
weakening the tropical forest carbon sink, which has performed a crucial 
role in slowing the pace of climate change over the past half-century 
(Qaim et al., 2020). 

The solution to this challenge is not to simply ban or replace palm oil. 
Not only would this have devastating socio-economic impacts, but the 
environmental impacts of vegetable oil production would simply be 
displaced elsewhere. Given how productive oil palm is compared to 
alternative crops, this could end up doing more harm than good for both 
climate and biodiversity (Beyer et al., 2020). Instead, it is vital to find 
ways to produce oil palm more sustainably. One way to do this is to 
increase efficiency by maximizing yields within existing oil palm land-
scapes – the so-called ‘land sparing’ approach (Grass et al., 2019; Phalan 
et al., 2011). Research shows that there are often significant gaps be-
tween actual and potential oil palm yields. Harvested yields rarely 
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exceed 3 t oil ha− 1 yr− 1, when estimates suggest that better cultivation 
practices could almost triple average yields to around 8 t oil ha− 1 yr− 1 

(Corley and Tinker, 2015; Qaim et al., 2020; Woittiez et al., 2017). 
Closing these yield gaps would be a success for not just people, but the 
environment as well, since it would allow more oil to be produced from 
less land. However, while some of the large-scale drivers of these yield 
gaps are known, such as climate and soil fertility (Ajeng et al., 2020; 
Sarkar et al., 2020), far less has been established on what causes yields to 
vary locally within landscapes – the scale at which farmers can actually 
intervene by adapting planting strategies. For example, local factors 
such as topography can have a profound influence on soil water and 
nutrient availability, as well as on microclimatic components, including 
solar radiation, air temperature, and humidity– all of which directly 
constrain plant growth (Jucker et al., 2018c). Moreover, these same 
landscape features can exacerbate or dampen the effects of extreme 
climate events, such as the unusually hot and dry conditions associated 
with El Niño (Nunes et al., 2021). 

A main challenge of identifying oil palm yield gaps across tropical 
landscapes is the scale of the plantations, which is often vast. This makes 
tracking the growth rates of oil palms from the ground both logistically 
challenging and prohibitively expensive (Mayes, 2020). One solution to 
this challenge is to leverage remote sensing technologies to map oil palm 
plantations from above, an approach that is becoming increasingly 
popular under the banner of precision agriculture (Mulla, 2013; Sishodia 
et al., 2020). One particularly promising technology in this regard is 
airborne LiDAR, which can capture the 3D structure of vegetation and 
the underlying terrain in great detail (Mulla, 2013). This makes airborne 
LiDAR an ideal tool for measuring vegetation height and biomass at 
large scales and exploring how features constrain their variation (Asner 
and Mascaro, 2014; Jucker et al., 2018b, 2018a). LiDAR data has also 
been used to automatically identify and measure the size of the crowns 
of individual plants, including oil palms (Dalponte and Coomes, 2016; 
Nunes et al., 2017). All of this suggests that by using repeat LiDAR 
surveys conducted at two or more points in time, it should be possible to 
track the growth of individual oil palms over time and explore how and 
why it varies across entire landscapes (Nunes et al., 2021). 

To test this idea, we acquired repeat LiDAR data from a region in 
Malaysian Borneo, predominantly covered by oil palm, and mapped the 
height growth of >500,000 individual oil palms between 2014 and 
2016. This period coincided with the global 2015–16 El Niño event 
(Jiménez-Muñoz et al., 2016), which resulted in unusually hot and dry 
conditions lasting multiple months across the region (Doughty et al., 
2021; Nunes et al., 2021). Using these data, we addressed two main 
questions about oil palm growth and its variation across tropical land-
scapes: (1) How much did oil palms grow during this period charac-
terized by unusually hot and dry conditions, and how variable were 
growth rates across the landscape? And (2) what developmental, 
ecological and landscape features drive variation in the growth rate of 
oil palms during this two-year period? 

2. Materials and methods 

2.1. Study area 

The data were acquired in conjunction with the Stability of Altered 
Forest Ecosystems (SAFE) project, situated in the Malaysian state of 
Sabah, in Borneo (Ewers et al., 2011). The SAFE project is one of the 
biggest ecological experiments in the world on ecosystem and biodi-
versity changes across tropical forests as a result of human modification, 
forest degradation, and fragmentation. The region has a tropical climate, 
with mean annual temperatures around 26 ◦C and annual rainfall be-
tween 2,600–3,000 mm (Jucker et al., 2018a). The SAFE landscape is 
highly fragmented and comprised of a variety of land-use types, 
including oil palm plantations of various ages, logged and fragmented 
secondary forests, and unlogged old-growth forests. Our study focuses 
on oil palm plantations in this region spanning an area of approximately 

94 km2. 
The site was affected by the 2015–16 El Niño drought, one of the 

strongest on record in Borneo (Doughty et al., 2021; Nunes et al., 2021) 
and many other tropical regions including Amazonia (Jiménez-Muñoz 
et al., 2016). In particular, the 2015-16 El Nino was anomalous not just 
because of lower-than-average rainfall, but also because of the sustained 
period of high temperatures (Doughty et al., 2021; Nunes et al., 2021). 
Combined together, these hot and dry conditions put forests in the re-
gion under intense and sustained physiological stress, leading to 
increased rates of tree mortality and leaf shedding (Doughty et al., 2021; 
Jiménez-Muñoz et al., 2016; Nunes et al., 2021). 

2.2. 2014 LiDAR data 

LiDAR data were first acquired across the SAFE landscape in 
November of 2014 with a Leica ALS50-II LiDAR sensor flown by NERC’s 
Airborne Research Facility. Data were collected as a discretized point 
cloud, with up to 4 returns per laser pulse (Jucker et al., 2018c). LiDAR 
point density varied considerably across the landscape, being highest 
over forested areas and lowest over oil palm plantations, which had a 
mean of 2.8 points m− 2. For the purposes of our study, we classified 
point cloud data into ground and non-ground returns with the software 
‘LAStools’ (https://rapidlasso.com/lastools). We then fit a digital 
elevation model (DEM) to the ground returns to generate a 1 m reso-
lution raster before subtracting the DEM values from the non-ground 
returns to generate a normalized point cloud. Next, we generated a 
0.5 m resolution canopy height model (CHM) from the normalised point 
cloud using the pit-free algorithm described in (Khosravipour et al., 
2014). Further details on the acquisition and processing of these data 
can be found in (Jucker et al., 2018a). The DEM, CHM and point density 
data are archived online at: 10.5281/zenodo.4020697. In addition to 
the LiDAR data, true-colour RGB imagery was also acquired across the 
SAFE landscape using a Phase One iXU-RS 1000 100 MP digital camera 
mounted alongside the LiDAR scanner. Individual images were subse-
quently georeferenced, orthorectified, and stitched together into a 
mosaic spanning the same area as the CHM and DEM. 

2.3. 2016 LiDAR data 

Our second LiDAR dataset was collected by the Global Airborne 
Observatory (GAO; formerly the Carnegie Airborne Observatory; Asner 
et al., 2012) in April 2016 as part of a larger-scale project which mapped 
aboveground carbon stocks across the state of Sabah (Asner et al., 2018). 
These flights were conducted at a higher altitude than in 2014, as the 
goal of the project was to maximize coverage of the region to best 
capture spatial variation in forest structure and aboveground biomass. 
However, the LiDAR point density over the oil palm areas considered in 
this study was almost identical to that of the 2014 data (3.3 points m− 2 

on average), allowing robust estimation of canopy height changes across 
the study area. The processing of the point cloud data followed a similar 
approach to the 2014 data described above. We used LAStools to classify 
the point clouds into ground and non-ground returns, following which a 
2 m resolution DEM and CHM were created. Further details of the pro-
cessing and acquisition of these data can be found in (Asner et al., 2018). 

2.4. Data processing 

All subsequent data processing and analysis were carried out using a 
combination of QGIS (QGIS Development Team, 2016) and R (R Core 
Team, 2020). For a general overview of the workflow described below, 
see Fig. 1. First, to minimize errors due to misalignment between the two 
datasets, we used the Georeferencer plug-in in QGIS to manually align 
the 2016 CHM to the 2014 data. Following this, we cropped the full 
extent of the 2014 and 2016 CHMs so that only overlapping areas 
covering oil palm plantations were retained for further analysis. This 
was achieved using a shapefile of the SAFE project landscape marking 
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the boundary of oil palm plantations, as well as creating a shapefile 
marking the area of overlap between the two datasets, as the 2016 data 
only covered a portion of the area flown in 2014 (Fig. 2). Additionally, 
areas of riparian forest surrounding rivers and areas affected by cloud 
cover were manually delineated and removed from the CHMs. 

2.5. Crown segmentation algorithm validation 

To develop an effective approach for identifying and delineating 
individual oil palms from LiDAR across the entire SAFE landscape, we 
created a validation dataset that would allow a comparison of the ac-
curacy of different crown segmentation routines. An area of approxi-
mately 4.5 ha straddling the boundary between a mature and young oil 
palm plantation was chosen and by using both the RGB imagery and 
2014 CHM data, we manually delineated all oil palm crowns within this 
area. A 5 m buffer was then applied to the area and we removed oil 
palms that fell within this buffer to avoid including individuals with 
crowns falling partially outside the extent of the imagery. This left a total 
of 410 manually delineated oil palms to assess the accuracy of the crown 
delineation algorithm (Fig. 3). 

To automatically identify and delineate the crowns of individual oil 
palms in the 2014 CHM we used inbuilt routines in the lidR package in R 
(Roussel et al., 2020). This involved first using a local maximum filter 
(LMF) algorithm to locate the tops of individual palms and then applying 

a segmentation algorithm to delineate the border of their crowns in the 
CHM. For the purposes of crown segmentation, we compared five 
alternative algorithms that have been proposed in the literature: dal-
ponte2016, li2012, silva2016 and watershed (as implemented in the lidR 
package) and the original version of dalponte2016 implemented in the 
itcSegments package. Based on this, we chose the dalponte2016 crown 
segmentation algorithm from the lidR package for all subsequent ana-
lyses, as it ranked first in terms of both accuracy and speed (see Table S1 
in Supporting Information for details). This algorithm has been used 
successfully in the past to map individual oil palms using LiDAR (Nunes 
et al., 2017), and has been shown to generally outperform other seg-
mentation routines applied to rasterized CHM data (Aubry-Kientz et al., 
2019; Eysn et al., 2015). It also has the key advantage over approaches 
that work on point cloud data that the algorithm is computationally 
scalable across large areas such as those considered in this study (~100 
km2). 

The segmentation routine is described in detail in Dalponte and 
Coomes (2016). Briefly, the LMF algorithm allows the user to specify a 
window size across which to search for local maxima (i.e., palm crowns), 
which we varied between 6 and 10 m. We used a fixed-size window with 
this range of values (as opposed to a variable-size window), as on 
average oil palms were observed to be spaced approximately 7–9 m 
apart regardless of their size, reflecting the typical planting configura-
tion of oil palm plantations. Once the local maxima have been identified, 

Fig. 1. Workflow diagram illustrating the main steps involved in processing the data, carrying out a validation of the palm segmentation routine, and the final 
data analysis. 
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Fig. 2. Map of the SAFE project landscape, showing the distribution of oil palm plantations and remaining forest areas. Areas of cloud cover which were masked from 
the analysis are shown in grey, while the dark purple line shows the contour of the area of overlap between the 2014 and 2016 LiDAR data. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Assessing the accuracy of the auto-
mated oil palm detection and crown delin-
eation. RGB imagery (a) and LiDAR-derived 
CHM data (b) from 2014 were used to 
manually delineate individual oil palm 
crowns in an area of approximately 4.5 ha. 
Crowns falling within a 5 m buffer from the 
edge of this area were excluded (purple 
polygons in c), leaving a total of 410 manu-
ally delineated crowns for validating algo-
rithms (yellow polygons in c). The accuracy 
of the automatic oil palm segmentation 
routine using a window size of 9 m is shown 
in (d). Correctly segmented oil palms repre-
sent those where a single individual was 
found within a manually delineated polygon 
(yellow polygons in d), over segmented 
palms are ones where more than one indi-
vidual was found within a manually delin-
eated polygon (light green polygons in d), 
and omitted palms are ones where no indi-
vidual was found within a manually delin-
eated polygon (blue polygons in d). For 
additional details on the segmentation 
routine see Table S1 and S2 in Supporting 
Information. (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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the segmentation algorithm then uses a decision tree approach to grow a 
crown around each individual treetop (Dalponte and Coomes, 2016). 

We assessed the accuracy of the segmentation routines by comparing 
the computer segmented crowns to those manually delineated by hand 
and calculating (i) the detection rate (i.e., the number of correctly 
segmented palms), (ii) the number of omitted palms (i.e., those which 
the algorithm failed to detect) and (iii) the number of over segmented 
palms (i.e., those which the algorithm incorrectly split into two or more 
palms) (Fig. 3). The primary goal was to keep the number of over- 
segmented palms as low as possible, as this would otherwise introduce 
a source of pseudoreplication in subsequent analyses. We therefore set 
an upper threshold of 2% for over segmented palms. This threshold of 
2% was chosen arbitrarily as a compromise between minimising over- 
segmentation while keeping omission rates as low as possible. 

2.6. Calculating height growth of individual oil palms across the SAFE 
landscape 

The best performing segmentation routine was used to automatically 
identify individual oil palm crowns across the entire 2014 CHM. To 
calculate height change between 2014 and 2016, we resampled the 2014 
CHM to 2 m to match the resolution of the 2016 data. The polygons of 
the individual oil palm crowns were then overlayed onto the CHMs from 
2014 and 2016 and we extracted the maximum height value of pixels 
falling within each polygon. Finally, to calculate the height change (in m 
yr− 1) of each oil palm we subtracted the height in 2014 from that of 
2016 and divided this by the time interval between surveys (17 months). 

As part of this process, we excluded any palms that did not have any 
data attributed it for any of the features we investigated, before filtering 
palms that were <2 m (Tan et al., 2014), and with a crown area <4 m2 in 
2014 from the analysis. To filter out remnant palms left within the 
landscapes that could have been mistakenly counted as oil palms, any 
individual >18 m in height was also excluded (Barcelos et al., 2015). 
Finally, we used Mahalanobis distance as implemented in the Out-
lierDetection package in R to identify and remove palms that exhibited an 
unrealistic change in height between 2014 and 2016 (see Fig. S1). These 
outliers could have been the result of a mismatch in the data, represent 
non-palm vegetation, or reflect palms that died or were severely 
damaged between surveys. In total, 14,144 palms were removed as 
outliers (2.1% of the total). We note that previous work has shown that 
LiDAR-based estimates of oil palm height are closely corrected to field- 
based measurements (Nunes et al., 2017), indicating that it should be 
possible to robustly estimates rates of oil palm height growth using 
repeat LiDAR acquisitions. 

2.7. Drivers of local-scale variation in oil palm height growth 

To explore the factors that could explain variation in oil palm growth 
rates across the landscape, we assembled data on a range of features 
linked to topography, ecological context, and plant development stage. 
First, the 2014 DEM was used to calculate several terrain metrics that 
have been shown to capture variation in hydrology, soil water avail-
ability, nutrients, local microclimate, and exposure to sun and wind 
(Jucker et al., 2018c). These included terrain elevation, slope, terrain 
ruggedness index (TRI), terrain position index (TPI) and aspect (see Figs 
S5–S10 in Supporting Information for maps of each of these spatial 
layers). Prior to calculating these metrics, we aggregated the DEM to a 
resolution of 10 m to smooth out any local artifacts and speed up sub-
sequent computations. These predictors were derived using the raster 
package in R. Following this step, aspect values were cosine transformed 
to obtain a variable ranging in value between − 1 (corresponding to 
north-facing slopes) and 1 (south-facing) (Blonder et al., 2018). 

In addition to these topographic metrics, we used a shapefile of rivers 
across SAFE to calculate the distance from rivers for all oil palms using 
the sf package in R (Pebesma, 2018). Similarly, the distance to the 
closest forest edge from each oil palm was calculated to test whether 

changes in microclimate, soil structure and pathogen loads related to 
proximity to intact forests might affect oil palm growth. Finally, to 
further test the effects of planting density and configuration, we deter-
mined gap fraction by aggregating the 2014 CHM to 20 m resolution and 
defining the proportion of pixels <1 m in height within a 20 m area 
around palms. These values were then subtracted from 1 to create a 
measure of ‘canopy cover’, where high values of canopy cover indicate 
palms surrounded by a high density of neighbours. 

Multiple regression was used to determine how well each of these 
predictors contributed to explaining variation in oil palm growth across 
the landscape. To avoid issues with multicollinearity, we calculated 
Pearson’s correlation coefficients (ρ) between all model predictors prior 
to model fitting (Fig. S2). Any that exceeded ρ > ± 0.6 were excluded 
from the analysis. Based on this, the following predictors were retained 
in the regression model: Palm height in 2014 (hereon in referred to as 
‘initial height’), canopy cover, distance to the forest edge, distance to 
rivers, ground elevation, TPI, slope, and aspect. All of the model pre-
dictors were scaled to have a mean of 0 and a standard deviation of 1 to 
allow their effect sizes to be directly comparable. As a post-hoc test of 
collinearity among model predictors, the variance inflation factors for 
the fitted model were calculated and confirmed as <2 for all predictor 
variables. We also tested whether individuals found in closer proximity 
to each other were more likely to exhibit similar growth rates than what 
may be assumed by chance, but found no evidence of spatial autocor-
relation in the model residuals (Fig. S3). 

3. Results 

3.1. Accuracy of oil palm segmentation 

For the individual oil palm segmentation, a window size of 9 m 
proved the best compromise between minimizing over-segmentation 
while also ensuring as few individuals as possible were omitted by the 
algorithm (Fig. 3 and Table S2). With this configuration, the dal-
ponte2016 segmentation algorithm implemented in the lidR package 
correctly segmented 67.1% of manually delineated oil palms and had an 
over-segmentation rate of just 1.7%, both of which were better than all 
other alternative segmentation algorithms we tested (Table S1). The 
segmentation accuracy of the dalponte2016 algorithm was greater for 
small palms <6 m in height (87.1%), whereas for mature individuals it 
was lower, at 57.1%. Reducing the window size to 8 m resulted in 
slightly higher segmentation accuracy (70.7%), but this came at the cost 
of doubling the rate of over-segmentation to >4% (Table S2). 

3.2. Oil palm height growth and its variation 

After applying the data quality filters described in the Methods, we 
delineated a total of 543,145 oil palms across the SAFE landscape and 
measured their height growth (Fig. 4). There was a significant difference 
in the mean initial height of palms (7.1 m) and their height in 2016 (9.2 
m) (t = –254.08, P < 0.0001), with palms growing an average of 1.6 m 
yr− 1 between the two LiDAR flights (Fig. 5). However, there was 
considerable variability in the rate of height growth across the study 
area, with 90% of values ranging between 0.5 m yr− 1 (5th percentile) to 
2.7 m yr− 1 (95th percentile). 

3.3. Drivers of spatial variation in oil palm height growth across the 
landscape 

Of the predictors included in the multiple regression model, all but 
TPI and aspect emerged as statistically significant in explaining varia-
tion in oil palm growth rates across the landscape (Fig. 6). Initial palm 
height emerged as the single strongest predictor of height growth, with 
smaller individuals (<4 m in height) growing an average of 1.7 m yr− 1, 
while mature ones (>12 m in height) grew 1.2 m yr− 1 (Fig. 5). Canopy 
cover was the second strongest predictor of growth, with palms growing 
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in denser stands exhibiting faster height growth rates. Distance from 
forest edges and distance to rivers were the next strongest predictors of 
height growth but they had opposite effects. Oil palms generally grew 
faster nearer forest edges and somewhat more slowly nearer water-
courses. Finally, oil palms generally grew slightly faster when positioned 
on steeper terrain within the landscape, and at lower elevations. How-
ever, it is necessary to consider that despite being statistically signifi-
cant, the effect size of these predictor variables was generally low and 
together they only explained around 6% of the variation in oil palm 
height growth rates across the SAFE landscape. 

4. Discussion 

4.1. Oil palm growth during El Niño events 

We found that oil palms were able to continue growing over the two- 
year period between 2014 and 2016 despite experiencing drought 
conditions linked to El Niño. Our results are consistent with recent work 
showing that net primary productivity of oil palm plantations in 

Indonesia actually increased during the initial phase of the 2015–16 El 
Niño despite decreases in soil moisture availability, due to lower cloud 
cover and greater incoming solar radiation (Stiegler et al., 2019). It was 
only later, when local fires ignited during the drought period caused 
haze to increase, that CO2 uptake by oil palms declined. By contrast, 
adjacent forests within the same landscape grew much more slowly 
during the El Niño period than before or after it, and even lost canopy 
height near edges due to tree mortality and leaf shedding (Nunes et al., 
2021). Not having access to data on oil palm growth rates before and 
after the 2015–16 El Niño, we could not directly quantify the degree to 
which drought conditions impacted oil palm growth rates. However, 
when our results are compared to the those of Nunes et al. (2021), which 
quantified the response of native vegetation within the same landscape 
to the 2015–16 El Niño, we found that oil palm growth rates were not 
only much faster but also much more consistent across the landscape. 
This suggests that oil palm growth is limited more by light than it is 
water availability – more so than in the case of native vegetation where 
high vegetation density cause intense competition for water during pe-
riods of drought. 

Fig. 4. Canopy height models (CHM) of oil palm plantations covering a portion of the SAFE project landscape derived from (a) the 2014 and (b) the 2016 LiDAR 
surveys. In panel (c), all automatedly segmented oil palm crown within this section of the landscape are shown, colour coded by the degree of height change they 
experienced between 2014 and 2016. The area shown in all three panels is 500 × 250 m in size. For maps showing variation in the canopy height of oil palm 
plantations across the entire study area see Fig. S4 in Supporting Information. 

Fig. 5. Comparison of oil palm height in 
2014 and palm height in 2016 (a). The 1:1 
grey line corresponds to no change in height 
over the 17-month period. The colour 
gradient represents the density of points, 
with dark grey corresponding to the highest 
density of points. A histogram of the distri-
bution of oil palm height change values 
across all 543,145 individual oil palms is 
show in in (b), with the vertical grey line 
indicating the mean height change value 
(1.6 m yr− 1). Palms with positive height 
change are shown in green, while those taller 
in 2014 are shown in brown. (For interpre-
tation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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That being said, our results are at odds with the conventional wisdom 
that palm oil production would tend to decline during periods of 
drought, such as those associated with El Niño (Hsiao, 2003; Oettli et al., 
2018). For example, previous work by (Woittiez et al., 2017) found that 
when there are water deficits >400 mm per year, oil palm yields were 
more than halved. Similarly, long-term observations from peninsular 
Malaysia, Sabah and Sarawak suggest that during extreme El Niño 
events like the one of 1997–98, oil palm fresh fruit bunch yields were 
>10% lower than in normal years (Oettli et al., 2018). What this sug-
gests is that while oil palms may be able to maintain CO2 uptake and 
vegetative growth during periods of low water availability, this does not 
necessarily then translate into fruit production. This highlights an 
important caveat to our analysis, as vegetative growth is not necessarily 
a direct proxy for fruit or oil yields, particularly over short-term periods 
characterized by anomalous climatic conditions. 

4.2. Variation in oil palm growth rates across landscapes 

While we anticipated that water availability would be one of the 
strongest predictors of palm growth across the landscape during El Niño 
events, oil palm growth rates actually increased with distance from 
rivers and decreased further away from forest edges. These trends could 
be due to a variety of reasons, including the fact that distance from rivers 
may not always represent the best proxy for soil moisture availability or 
– as mentioned previously – that growth may be faster when soils are not 
fully saturated (Stiegler et al., 2019). What our results do suggest is that 
common-place strategies aimed at minimising forested riparian buffer 
zones on oil palm plantations may be misguided. Many oil palm plan-
tation managers view forest patches as potential sources of pests and 
disease and therefore would prefer to remove these where possible 
(Edwards et al., 2014; Salaheen and Biswas, 2019). Our results suggest 
that the oppositive may in fact be the case and that maintaining and 

expanding riparian zones could allow land to be used more efficiently 
for oil palm production while also preserving key habitat corridors for 
biodiversity and reducing run-off of soil and fertilizers into river sys-
tems. This would also have the benefit of creating a more structurally 
complex landscapes, with benefits for both biodiversity and people 
(Chaplin-Kramer et al., 2011; Edwards et al., 2014; Klein et al., 2003; 
Koh, 2008; Landis et al., 2003; Ricketts et al., 2004; Tscharntke et al., 
2008; Woltz et al., 2012). 

In terms of topographic effects on growth rates, we found that oil 
palms grew slightly faster at higher elevations within the SAFE land-
scape. A possible explanation for this is that during the hotter-than- 
average El Niño conditions, temperatures in the lowest parts of the 
landscape may have exceeded optimal conditions for growth. This is 
consistent with previous work exploring how local-scale microclimatic 
conditions vary across this study area, which showed that in lowland 
areas with low vegetation cover, high near-surface air temperatures 
cause atmospheric vapour pressure deficit (VPD) to exceed the point at 
which most tropical plant species – including oil palm – will shut their 
stomata (Jucker et al., 2018c). By contrast, we found no relationship 
between growth rates and TPI, indicating that small-scale variation in 
terrain features such as ridges and depressions which affect water flow 
and retention in the soil were of little importance in determining oil 
palm growth. This again is in contrast to what has previously been 
observed for non-oil palm vegetation within this same landscape (Nunes 
et al., 2021; Röll et al., 2015), and suggests that atmospheric dryness 
linked to air temperature and VPD may be more important in deter-
mining oil palm growth than local-scale differences in soil moisture 
availability. 

Lastly, we found that height growth was strongly linked to initial size 
and the cumulative vegetation cover of surrounding individuals. By far 
the strongest predictor of palm growth in our study was the initial size of 
palms, with smaller, younger palms growing significantly faster than 

Fig. 6. Standardised regression coefficients (±99% confidence intervals) for all predictor variables included in the multiple regression model. The green dashed 
vertical line represents a coefficient estimate of zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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those that were larger and already mature. This likely reflects an onto-
genetic trend in growth, whereby most plant species will slow down 
their height growth as they approach maturity. However, previous work 
has shown that oil palms continue to grow almost linearly in height even 
by the time they reach 20–25 years of age (Pang Tan et al., 2014). An 
alternative reason why younger oil palms may have been able to sustain 
faster growth rates during the El Niño period is that they tend to have 
much lower water use rates compared to mature individuals (Röll et al., 
2015), suggesting they would have required less water to sustain their 
growth. In addition to initial size, canopy cover was also a significant 
predictor of growth, with palms tending to grow fastest when in denser 
stands. This is consistent with our understanding of how plants allocate 
resources towards vertical growth when experiencing competition for 
light from neighbouring individuals. It also underscores the fact that 
under current planting densities of 140–160 oil palms per hectare, in-
dividual palms do not appear to be competing significantly with each 
other for water even during conditions of drought brought upon by El 
Niño. 

4.3. Towards monitoring oil palm growth rates and yields using remote 
sensing 

While our approach based on the use of repeat airborne LiDAR 
allowed us to successfully map the height growth of individual palms, 
when it came to explaining how these growth rates vary across land-
scapes we were only able to explain a small portion of the total variance. 
To some extent this likely reflects that oil palm plantations have been 
designed specifically to minimise this variation and standardize yields. 
However, it may also indicate that other underlying drivers of growth 
differences between individuals were not accounted for in our analysis, 
such as variation in fertilizer use, soil type, pest prevalence or oil palm 
cultivar (Manjit et al., 2014; Ruslan et al., 2019; Sundararaju and Rat-
nakaran, 2002; Woittiez et al., 2019). 

To our knowledge our study is one of the very first to use repeat 
LiDAR to track the growth of individual trees at landscape scales. In 
terms of developing this approach further, a next step would be to test 
whether alternative crown delineation routines could further improve 
the accuracy of individual oil palm detection. A number of studies have 
been conducted to benchmark the accuracy of different individual tree 
crown delineation routines (Aubry-Kientz et al., 2019; Eysn et al., 2015), 
including the dalponte2016 algorithm used here (Dalponte and Coomes, 
2016), AMS3D (Ferraz et al., 2016), Graph-Cut (Williams et al., 2019), 
Profiler (Hamraz et al., 2017, 2016) and SEGMA (St-Onge et al., 2015). 
These comparisons have generally found dalponte2016 to be among the 
best performing algorithms, particularly among those which can be 
applied to rasterized CHM data and are therefore computationally 
scalable to large areas. However, beyond the comparisons we carried out 
as part of this study (Table S1), as far as we are aware a similar 
benchmarking exercise has yet to be carried out specifically for oil 
palms, meaning that there may be room to further improve the accuracy 
of the individual tree detection routine presented here. Nevertheless, 
any attempt to further improve the detection of individual oil palms will 
need to carefully weigh these improvements against the computational 
scalability of the approach. In particular, while point cloud based crown 
delineation routines like AMS3D may offer some marginal increases in 
the accuracy of single tree detection, they are currently computationally 
much too slow to run on areas spanning hundreds of square kilometres 
such as the SAFE project landscape considered in this analysis. 

Another key area of future work lies around establishing whether 
there is a robust link between oil palm vegetative growth, which can be 
measured via remote sensing, and yields, which instead may not be 
possible to estimate directly from airborne imagery. This also raises the 
question of whether airborne LiDAR is still the best tool for this task. 
RGB imagery acquired using low-cost UAVs is proving increasingly 
promising as a tool to both delineating individual plants using deep 
learning (Weinstein et al., 2020) and then measuring their height using 

structure from motion (albeit with its limitations linked to poor terrain 
detection in closed canopy systems). As the resolution of these data are 
far higher than that typically achieved by LiDAR-based CHMs (centi-
metres as opposed to meters), it may even be possible to use these data to 
directly map oil palm fruit bunches, allowing a way to explicitly quan-
tify both vegetative growth and yields at the same time. As our results 
demonstrate, there may well be opportunities for better management of 
oil palm plantations to achieve win-win scenarios for both agricultural 
production and biodiversity, particularly around the retention and 
expansion of riparian buffer zones. Novel remote sensing approaches 
allowing both growth and productivity of individual oil palms to be 
tracked over time can help pinpoint where these low hanging fruit lie. 

5. Author statement 

TJ designed the study. GPA and DAC provided the data. LB con-
ducted the analysis with the assistance of TJ and MD. LB wrote the first 
draft of the manuscript with TJ. All authors contributed substantially to 
revisions. 

6. Data availability statement 

The 2014 DEM, CHM and point density data are archived online and 
freely available at: 10.5281/zenodo.4020697. All data needed to repli-
cate the results of this study will be archived on Zenodo following the 
review of this article. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All data used in this study are publicly available and a corresponding 
DOI has been added to the manuscript. 

Acknowledgements 

L.B. was funded by a Lady Emily Smyth Studentship from the Bristol 
Centre for Agricultural Innovation (BCAI). T.J. was supported by a UK 
NERC Independent Research Fellowship (grant code: NE/S01537X/1). 
The acquisition of the 2014 LiDAR data was led by D.A.C. and supported 
by the NERC Human Modified Tropical Forests research programme 
(grant code: NE/K016377/1). The acquisition of the 2016 LiDAR data 
was led by G.P.A. with funding from the Roundtable on Sustainable 
Palm Oil, UN Development Programme GEF, Avatar Alliance Founda-
tion, , Worldwide Fund for Nature, Morgan Family Foundation, and the 
Rainforest Trust. We are grateful to NERC’s Airborne Research Facility 
and Data Analysis Node for performing the airborne survey and pre- 
processing the data. We give acknowledgment to the Sabah Founda-
tion, Sabah Biodiversity Centre, South-East Asia Rainforest Research 
Partnership, the State Secretary, Sabah Chief Minister’s Departments, 
Sabah Forestry Department, Benta Wawasan, and the Economic Plan-
ning Unit for their permission and support in carrying out the work in 
Sabah. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jag.2022.103117. 

L. Beese et al.                                                                                                                                                                                                                                    

http://10.5281/zenodo.4020697
https://doi.org/10.1016/j.jag.2022.103117
https://doi.org/10.1016/j.jag.2022.103117


International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103117

9

References 

Ajeng, A.A., Abdullah, R., Malek, M.A., Chew, K.W., Ho, Y.C., Ling, T.C., Lau, B.F., 
Show, P.L., 2020. The effects of biofertilizers on growth, soil fertility, and nutrients 
uptake of oil palm (Elaeis Guineensis) under greenhouse conditions. Processes 8, 
1681. https://doi.org/10.3390/PR8121681. 

Asner, G.P., Brodrick, P.G., Philipson, C., Vaughn, N.R., Martin, R.E., Knapp, D.E., 
Heckler, J., Evans, L.J., Jucker, T., Goossens, B., Stark, D.J., Reynolds, G., Ong, R., 
Renneboog, N., Kugan, F., Coomes, D.A., 2018. Mapped aboveground carbon stocks 
to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 
217, 289–310. https://doi.org/10.1016/J.BIOCON.2017.10.020. 

Asner, G.P., Knapp, D.E., Boardman, J., Green, R.O., Kennedy-Bowdoin, T., 
Eastwood, M., Martin, R.E., Anderson, C., Field, C.B., 2012. Carnegie Airborne 
Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor 
fusion. Remote Sens. Environ. 124, 454–465. https://doi.org/10.1016/J. 
RSE.2012.06.012. 

Asner, G.P., Mascaro, J., 2014. Mapping tropical forest carbon: Calibrating plot estimates 
to a simple LiDAR metric. Remote Sens. Environ. 140, 614–624. https://doi.org/ 
10.1016/J.RSE.2013.09.023. 

Aubry-Kientz, M., Dutrieux, R., Ferraz, A., Saatchi, S., Hamraz, H., Williams, J., 
Coomes, D., Piboule, A., Vincent, G., 2019. A comparative assessment of the 
performance of individual tree crowns delineation algorithms from ALS data in 
tropical forests. Remote Sens. (Basel) 11, 1086. https://doi.org/10.3390/ 
RS11091086. 

Barcelos, E., de Almeida Rios, S., Cunha, R.N.V., Lopes, R., Motoike, S.Y., Babiychuk, E., 
Skirycz, A., Kushnir, S., 2015. Oil palm natural diversity and the potential for yield 
improvement. Front. Plant Sci. 6, 1–16. https://doi.org/10.3389/FPLS.2015.00190/ 
BIBTEX. 

Beyer, R., Durán, A., Rademacher, T., Martin, P., Tayleur, C., Brooks, S., Coomes, D., 
Donald, P., Sanderson, F., 2020. The environmental impacts of palm oil and its 
alternatives. BioRxiv. https://doi.org/10.1101/2020.02.16.951301. 

Blonder, B., Both, S., Coomes, D.A., Elias, D., Jucker, T., Kvasnica, J., Majalap, N., 
Malhi, Y.S., Milodowski, D., Riutta, T., Svátek, M., 2018. Extreme and highly 
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