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Abstract: In recent times, an increasing number of applications in different fields need gas sensors
that are miniaturized but also capable of distinguishing different gases and volatiles. Thermal
electronic noses are new devices that meet this need, but their performance is still under study. In
this work, we compare the performance of two thermal electronic noses based on SnO2 and ZnO
nanowires. Using five different target gases (acetone, ammonia, ethanol, hydrogen and nitrogen
dioxide), we investigated the ability of the systems to distinguish individual gases and estimate their
concentration. SnO2 nanowires proved to be more suitable for this purpose with a detection limit
of 32 parts per billion, an always correct classification (100%) and a mean absolute error of 7 parts
per million.

Keywords: metal oxide; gas sensor; resistive sensor; chemiresistor; electronic nose

1. Introduction

Nowadays, the need for gas sensors is increasingly clear and important in many fields.
Progress brings benefits but also hidden dangers, such as the effect of day-to-day breathing
of harmful gases that ruin health. Air pollution in urban areas is only the most obvious of
these dangers to human health [1–3]. Numerous industrial and artisanal processes emit
gases with negative long-term effects [4,5]. Many materials used for objects that share the
spaces inhabited by humans release volatile substances, the dangers of which are not yet
known [6]. For these reasons, it is important to be able to monitor the presence of gas in
environments and activities related to human life. The availability of tiny sensors that can be
integrated into buildings, cars and portable devices, such as cell phones or even wearables,
would allow for the creation of wide and capillary networks capable of monitoring the
situation at a high level. Sensors of this type would also be important in many other fields,
such as food and beverage quality [7,8], agriculture [9], security against terrorism [10] and
early medical diagnosis [11]. Metal oxides (MOs) are the ideal candidate for small and
cheap devices as they work very well as chemoresistors, i.e., electrical resistors, the value
of which changes according to the surrounding atmosphere (the sensor only needs two
electrodes, with very simple signal reading) [12–14].

Furthermore, the latest generation of chemoresistors use nanostructured materials,
which have a very large surface that greatly increases the response intensity. The shape [15]
and, more importantly, the dimensions [16] of the nanostructures influence the sensing
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performance of the sensors; therefore, one of the most used materials are nanowires (NWs).
N-type semiconductors have been studied for longer and more thoroughly as they perform
better as gas detectors [17,18]. The two materials most studied previously are SnO2 and
ZnO, which are still the most used owing to their superior performance. Unfortunately, the
fact that MOs are sensitive to a lot of gases is also a flaw as it is not possible to recognize
what the sensor is detecting. In the same way, the simplicity of resistive sensors is also
a defect, since the output signal they give is one dimensional and therefore intrinsically
non-selective. The traditional solution to the lack of selectivity is to combine sensors
based on different materials in an array, called an electronic nose [19]. This type of device
has attracted a lot of interest as it shows a good balance between performance on the
one hand and size and cost on the other [20,21]. Despite this, the cost and dimensions of
a traditional electronic nose do not yet to allow for its widespread diffusion and integration
into everyday devices. To this end, taking up Sysoev’s pioneering works [22,23], we have
recently developed a new approach that uses the same nanostructured material working at
different temperatures instead of different materials, as if it were an electronic nose [24–26].
The lower expected selectivity is balanced by the size (it can be a few square millimeters),
which allows it to be easily integrated into a smartphone or smartwatch. Despite the
great potential of this type of thermal electronic nose, its recent development means that
its performance has not yet been studied in detail. In this work, we tested two different
thermal electronic noses based on SnO2 and ZnO nanowires working at five different
temperatures. The performance of the two systems was tested against five gases: acetone,
ammonia, ethanol, hydrogen and NO2. The performance was evaluated in two steps: how
well the electronic nose could distinguish the different gases and the error in the estimation
of the gas concentration. The sensor based on ZnO nanowires classified 95% of the samples
correctly, while the sensor based on SnO2 nanowires classified all gases perfectly (100%).
The mean absolute error on the concentration estimate is low in both cases (7 parts per
million for the SnO2 nanowires and 11 for the ZnO nanowires), but rises to 30 parts per
million (ppm) in the case of the misclassified sample. Hence, SnO2 nanowires work best
as active materials inside a thermal gradient based electronic nose. We emphasize that
this preliminary work must be reconsidered according to the boundary conditions of the
application for which the electronic nose is to be used.

2. Materials and Methods
2.1. Synthesis of SnO2 and ZnO Nanowires

Both tin oxide (SnO2) and zinc oxide (ZnO) nanowires were grown by means of
chemical vapor deposition with modifications to the recipes in order to obtain nanowires
of similar size. In both growth processes, an alumina vessel containing the source powder
was placed inside a quartz tube in the center of a single-zone furnace (Lingdberg Blue
M, Thermo Fisher Scientific, Waltham, MA, USA) at the highest temperature point. The
substrate (a 1 × 3 cm2 rectangle of silicon wafer with 300 nm of thermally grown oxide
and 5–7 nm of gold catalyst) was positioned downstream of the source at the optimum
growth distance.

In the case of tin oxide nanowires, the source powder was 99.99% pure tin monoxide
(Sigma-Aldrich, St. Louis, MO, USA), and the substrate was placed approximately 3 cm
away from it. The quartz tube was pumped at 5 × 10−3 mbar and purged with high-purity
argon (99.999%), and this process was repeated three times to clean the system. Next, the
oven was heated up to 850 ◦C at a rate of 50 ◦C per minute and held at this temperature for
five minutes. Finally, 0.35 standard cubic centimeters (sccm) of oxygen was flowed through
the quartz tube, starting the 30 min growth process, after which the system was shut down
and cooled naturally.

In the case of zinc oxide nanowires, the source powder was 99.995% pure zinc
(Sigma-Aldrich, St. Louis, MO, USA), and the substrate was placed at about 7 cm from it.
The quartz tube was cleaned as explained previously and then heated at a rate of 50 ◦C
per minute to a temperature of 730 ◦C. After five minutes, a mixture of 50 sccm of argon
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and 2 sccm of oxygen was flowed for 40 min, then the process was finished and the system
cooled naturally.

2.2. Material Characterization

The morphology of the tin oxide and zinc oxide nanowires was characterized with sec-
ondary electron microscopy (SEM) using a Hitachi S-4800 (Tokyo, Japan). The structure was
investigated with X-ray diffraction (XRD) using a Philips Xpert Pro (Malvern Panalytical,
Malvern, UK) operating at 40 kV with CuKα radiation.

2.3. Fabrication of the Sensor

To fabricate the sensor, the nanowires were transferred to another substrate, a 1 × 2 cm2

piece of silicon wafer with a 300 nm layer of thermally grown oxide. To perform this, each
sample with the nanowires was sonicated in dimethylformamide for two seconds to obtain
a dispersion, which was then deposited on the new substrate by spinning a few drops at
6000 rpm. On top of the substrate with the dispersed nanowires, a pair of interdigitated
Ti/Pt electrodes with a thickness of 10/250 nm was then deposited by means of sputtering
and UV lithography. The semiconductor nanowires acting as a bridge between the metal
electrodes thus served as a chemoresistor.

2.4. Gas Sensor Measurements

Each interdigitated chemoresistive sensor was placed in the measurement chamber
on top of a heatable sample holder. The measurement chamber was connected to gas
cylinders through mass flow controllers in order to vary the type and concentration of
gas to be tested. A pair of micromanipulators was used to contact the sensor electrodes
and bring the signal to a multimeter (Keithely 2410, Cleveland, OH, USA) controlled with
a homemade data acquisition program (LabView, National Instruments, Austin, TX, USA).
The sensors were held at 500 ◦C for 6 h and powered with 1 V in order to stabilize the
nanowires and their base resistance [27]. Both sensors showed a linear trend of current
versus voltage, demonstrating good ohmic contact. Both sensors with SnO2 and ZnO
nanowires were tested under the exact same conditions: at five different temperatures
(200, 250, 300, 350 and 400 ◦C) towards the same five gases (acetone, ammonia, ethanol,
hydrogen and nitrogen dioxide). Each gas was measured at nine different concentrations,
ranging from 5 to 250 parts per million (ppm), in order to cover the concentrations indicated
as dangerous by the institutions [28–32].

The definition S = RAIR/RGAS was used to calculate the response intensity, where
RGAS and RAIR are the resistance of the sensor in the presence of the target gas and in air,
respectively. The standard definition was used to calculate the limit of detection (LoD): the
intercept between the slope of the response as a function of concentration and three times
the standard deviation of the signal.

2.5. Machine Learning

For each sensor, the response at the five temperatures, calculated as explained in
the previous section, was combined into a five-dimensional point. Principal component
analysis (PCA) [33] was applied to the five-dimensional points in order to reduce their
dimensionality and visualize the relationships between the points relating to the various
gases. The distinction of the different gases was instead carried out by a support vector
machine [34] with a linear kernel used as a classifier, which worked on all five dimensions.

The points were then passed to five other support vector machines (SVM), one for
each gas, depending on how they were classified in the previous step. These SVMs were
used as five-dimensional regressors in order to estimate the gas concentration. It should
be emphasized that for each point, the regressor relative to the gas that the system has
previously classified was used, not the real one, as this can strongly increase the error in
the concentration estimate.
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3. Results and Discussion
3.1. Nanowire Characterization

The morphology of the zinc oxide and tin oxide nanowires obtained by chemical
vapor deposition was studied with scanning electron microscopy; the SEM images are
shown in Figure 1.
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show the experimental patterns (in black), while the bottom images show the reference pattern from ICDD (in red). 

Figure 1. SEM images of the nanowires grown by CVD and used as gas sensors: (a) ZnO nanowires; (b) SnO2 nanowires.

Figure 1a shows the ZnO nanowires which have an average diameter of about
50–60 nm and are very constant and homogeneous. Figure 1b instead shows the SnO2
nanowires, which have an average diameter of around 50–65 nm. In this case, the nanowires
tend to create “sails” in some places, even if it is not a very frequent effect. The shape
and size of the nanowires are quite similar, which allows for a better comparison of their
performance as gas sensors.

The structure of the nanowires was investigated with X-ray diffraction, shown in
Figure 2. The experimental patterns obtained from the samples grown by CVD (before
being transferred to fabricate the sensor) are shown in the upper row (in black), while in
the bottom row (in red) the reference patterns from the International Center for Diffraction
Data are shown.
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It is evident that the experimental pattern in Figure 2a agrees with the underlying
reference pattern, and each peak can be easily indexed to a hexagonal wurtzite with lattice
parameters of a = b = 3.249 Å and c = 5.206 Å. Similarly, all the diffraction peaks present
in the experimental pattern in Figure 2b can be easily indexed to the tetragonal phase of
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SnO2 with lattice parameters of a = b = 4.742 and c = 3.186 Å and therefore agree well
with the standard values in the pattern below. In both experimental patterns, amorphous
contributions and peaks from impurities or other phases are absent, confirming the high
purity of the crystalline nanowires.

3.2. Gas Sensing Measurements

The sensor response was measured for each gas at the five temperatures (200–400 ◦C)
in the traditional way, and the limit was calculated at each temperature. Since the sensor
signal is louder at low temperatures, the LoD at 200 ◦C is the largest for each gas. For this
reason, we considered this value as the limit of detection of the thermal electronic nose.
The detection limits of the electronic nose based on ZnO nanowires were found to be 0.7,
2.1, 1.8, 1.5 and 0.9 parts per million respectively for acetone, ammonia, ethanol, hydrogen
and nitrogen dioxide. The corresponding detection limits for the SnO2 nanowire-based
electronic nose were 0.9, 1.2, 0.8, 0.2 and 0.4 parts per million. The average LoD is therefore
0.7 ppm for the ZnO nanowires and 1.4 ppm for the SnO2 ones. This also partly stems from
the higher resistivity of the ZnO nanowires, which makes the signal noisier.

The five response values, calculated at the five temperatures according to the definition
given in Section 2.4, were then combined together in five-dimensional points of this type:
PA = (RA

200◦C, RA
250◦C, RA

300◦C, RA
350◦C, RA

400◦C) and PA = (RB
200◦C, RB

250◦C, RB
300◦C,

RB
350◦C, RB

400◦C). A single response as a one-dimensional signal is inherently non-selective.
Instead, the five responses combined contain a lot of information, not only the five values
but also all the correlations between them. This can be seen in Figure 3a: if we compare the
response of a sensor at a single temperature for gas A and for gas B (one of the plots in blue
on the left and the corresponding in red in the right column), it is not possible to recognize
the gas in question. If, on the other hand, we combine the five responses of the left column
into the radar plot in blue in the center of Figure 3a and those of the right column into
the radar plot in red, we can clearly see the difference, since the two forms relating to the
two gases are clearly different.
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Figure 3. Procedure for combining the five sensor responses at different temperatures: (a) the responses calculated in the
five graphs in each column (blue and red) are combined into a radar plot (blue and red, respectively); (b) the five response
values become a five-dimensional point; (c) which, in our case, is reduced to three dimensional by PCA.

The radar plot relative to a gas increases in amplitude as the concentration of the gas
increases, but retains the same shape. It should be emphasized that radar plots are used
only to be able to easily compare the responses of the thermal electronic nose to different
gases: the machine learning algorithms work in 5D (using the points PA and PB, like in
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Figure 3b). Unfortunately, it is impossible to compare too many overlapping shapes in
a radar plot. Since 5D space is impossible to visualize, the best way to see relationships
between responses related to different gases is to perform a principal component analysis,
which reduces dimensionality (in our case from 5D to 3D or 2D) while keeping as much
information as possible. Figure 3c shows how the two radar plots (blue and red) in Figure 3a
appear in a PCA graph after reducing from five to three dimensions: each radar graph
becomes a single point, which contains almost all the information of the five responses at
different temperatures. In this way, it is possible to plot many points relative to different
gases and clearly perceive the relationships between points of different gases or of the
same gas at different concentrations. The greater the distance between the two points in
the graph, the greater the measures from which they derive are different from each other.

3.3. Qualitative Dinstinction

As the first step, we plotted the responses of the sensors as radar plots to qualitatively
evaluate how selective the two sensors are. The graphs obtained with the sensor based on
SnO2 nanowires are shown in the upper row of Figure 4, while those obtained with the
sensor based on ZnO nanowires are shown in the lower row.
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Figure 4. Radar plots obtained by measuring 100 ppm of each gas at five temperatures: (a) with the sensor based on SnO2

nanowires; (b) with the sensor based on ZnO nanowires.

As can be seen, the radar plots shown in the upper row of Figure 4 are quite different
from each other and therefore seem to indicate a good selectivity of the sensor. On the
bottom row, however, the last two radar plots look quite similar. In reality, the responses
to hydrogen are much greater, as can be seen from the scale of the radar plot, but the
selectivity (classification of the different gases) is based only on the shape and not on the
size of the plot.

Unfortunately, this method does not work well if one wants to compare different
points of each gas because the graph becomes confusing with more than 3–4 plots. For this
reason, we used the principal component analysis on the five-dimensional points obtained
from the sensor responses, and the results are shown in Figure 5.

Although both methods (radar plots and PCA plots) are just approximations of the
5D situation, the PCA plots shown in Figure 5 can show many points more clearly. In
Figure 5, the components PC2 and PC3 are shown since the component PC1 is mainly due
to the variation in gas concentration; therefore, the figure shows the best point of view
to appreciate the separation between the different target gases. The difference between
the graph obtained with the SnO2 nanowires (left) and the one obtained with the ZnO
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nanowires (right) is remarkable since in the first graph the points relating to each gas seem
clearly more separated.
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Figure 5. PCA plots showing measurements of the five gases obtained with (a) the sensor based on SnO2 nanowires and
(b) the sensor based on ZnO nanowires.

In order to try to improve the distinction between gases, we attempted to normalize
each group of five responses (each radar plot, or each point in the PCA) to its highest value.
In this way, we expected the specificity of each gas (the shape of its radar plot) to be more
important than the concentration in the comparison for the classification of the gas.

In each image, the view that best separates the points of the different gases was
chosen. As can be seen, the points in Figure 6a separate even better than in Figure 5a,
demonstrating that normalization helps classification by reducing the contribution due to
gas concentration. Unfortunately, the effect is minimal in Figure 6b, in which it seems that
some gases are still not very separated.
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However, it should be emphasized that these are only dimensional reductions of the
true five-dimensional space, which is also limited by our visual perception. Hence, to have



Nanomaterials 2021, 11, 2773 8 of 11

an objective vision that is not approximate and not distorted by human perception, we
used machine learning algorithms that work directly in five dimensions.

3.4. Classification

A support vector machine, used as a classifier, was used as the “brain” for the distinc-
tion between gases. This machine learning algorithm is supervised, meaning it needs data
to “learn” how to classify. For this reason, five different concentrations for each gas (5, 20,
50, 150 and 250 ppm) were used as the training dataset. Four other concentrations (10, 30,
100 and 200 ppm) were then used to test the performance of the sensing system.

The 5D points of the training set are used by the algorithm to identify hyperplanes
(4D spaces) that divide the 5D space into zones related to each gas. Once this map has been
created (as a sort of calibration), the next points are automatically compared with the map
and classified according to the zone of 5D space they fall into.

The results of the classification obtained with the sensor based on SnO2 nanowires are
shown in Table 1.

Table 1. Confusion matrix obtained with the sensor based on SnO2 nanowires.

Estimated

Acetone Ammonia Ethanol Hydrogen NO2

Acetone 4
Ammonia 4

True Ethanol 4
Hydrogen 4

NO2 4

As can be seen from the confusion matrix in Table 1, all measured points were correctly
classified; therefore, the sensor based on SnO2 nanowires perfectly distinguished the tested
gases, albeit at different concentrations.

The same procedure was carried out with the five-dimensional points obtained from
the responses of the sensor based on ZnO nanowires, and the results are reported in Table 2.

Table 2. Confusion matrix obtained with the sensor based on ZnO nanowires.

Estimated

Acetone Ammonia Ethanol Hydrogen NO2

Acetone 4
Ammonia 4 1

True Ethanol 4
Hydrogen 3

NO2 4

In this case, 19 out of 20 points are correctly classified, but one is misclassified. To be
exact, the system mistakes the lowest concentration point of hydrogen for ammonia. This
is in accordance with Figures 5b and 6b, where the ammonia points are very close to the
low concentration points relating to hydrogen.

It should be emphasized that this result is a much more advanced step than those
in Section 3.2, since the thermal electronic nose in this case is able to distinguish gases
autonomously, without a human having to observe any image and deduce anything. In fact,
while the colors in Figures 5 and 6 were given knowing a priori which gas it was, in this
case, once trained, the electronic nose understands by itself which gas is being measured.
The electronic nose based on ZnO nanowires correctly recognized the gas only in 95% of
cases, while the one based on SnO2 nanowires recognized them all perfectly (100%).

3.5. Quantification

Once the gas was recognized with the classifier, the data were split based on the
gas that the system recognized (right or wrong) and passed to another support vector
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machine. The five support vector machines, each related to a gas, worked as regressors in
the five-dimensional space to estimate the gas concentration. The regression results are
shown in Figure 7.
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Figure 7a shows the estimated concentration from the thermal electronic nose based
on SnO2 nanowires. The true concentration is on the abscissa, while on the ordinate there
is the estimate of the electronic nose; therefore, the diagonal represents the perfect result.
The estimates are all very close to the diagonal, with a very low error. The mean absolute
error (MAE) is in fact less than 10 parts per million for all gases. Furthermore, at low
concentrations, the estimates are always higher than the true concentration, and this is
positive for the sensor: a possible threshold alarm would trigger with some false positives,
but it would not risk tripping in the presence of gas.

The situation is worse in Figure 7b, which was obtained with the responses of the
electronic nose based on the ZnO nanowires. In this case, the error on the estimate is
generally greater, even if it remains good. The error increases significantly if we consider
the wrongly classified measurement, since in this case 10 ppm of hydrogen was confused
as 40 ppm of ammonia. It is therefore clear that classification is the most important step as
it strongly influences the performance of gas concentration quantification.

4. Conclusions

The performance of two thermal electronic noses, identical in every respect except
for the active material used as a sensor (ZnO and SnO2 nanowires, respectively), were
studied regarding five gases (acetone, ammonia, ethanol, hydrogen and nitrogen dioxide).
Nine different concentrations were measured for each gas from 5 to 250 ppm in order to
test the performance along the entire concentration range around the hazard threshold.
The electronic nose based on ZnO nanowires showed a correct classification in 95% of
cases and an error that was influenced by the misclassifications. The detection system
based on SnO2 nanowires, on the other hand, classified perfectly (100%) and estimated
the concentration of all five gases with a mean absolute error of less than 10 ppm. The
electronic nose based on SnO2 nanowires at different temperatures is therefore a good
candidate for a gas detection system that is selective and small enough to be integrated
into smartphones and other devices.
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