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Abstract: This research work aims to study the effect of training parameter concept and sample size
in the process of classification by using a fuzzy Possibilistic c-Means (PCM) approach for Pigeon Pea
specific crop mapping. For specific class extraction, the “mean” of the training data is considered as a
training parameter of the classification algorithm. In this study, we proposed an “Individual Sample
as Mean” (ISM) approach where the individual training sample is accounted as a mean parameter
for the fuzzy PCM classifier. In order to avoid the spectral overlap of target Pigeon pea crop with
other crops in the study area, a temporal indices database was generated from Sentinel 2A/2B
satellite images acquired during the 2019–2020 Pigeon Pea crop cycle. The spectral dimensionality of
temporal data was reduced to extract the required bands to achieve maximum enhancement of the
target crop class in the temporal data. Further, the training sample size was increased to study the
heterogeneity within the class in the classified output. The proposed ISM approach delivered a higher
mean membership difference (MMD) between the Pigeon Pea crop and the co-cultivated Cotton crop
as compared to the conventional mean method. This indicated that a better separation was achieved
between the target crop and the spectrally similar crop grown, that were cultivated in the same study
area. When the sample size was gradually increased from 5 to 60, the MMD values within the Pigeon
Pea test fields remained in the range 0.013–0.02, thereby implying that the proposed algorithm works
better even with a small number of training samples. The heterogeneity was better handled using
the proposed ISM approach since the variance obtained within Pigeon Pea field was only 0.008, as
compared to that of 0.02 achieved using the conventional mean approach.

Keywords: training concept; sample size; temporal indices; Mean Membership Difference (MMD)

1. Introduction

India is the primary centre of the origin and diversification for the Pigeon Pea crop.
India is also the largest producer (over 85%) and consumer of the Pigeon pea crop with
an annual production of 4.2 million metric tonnes in the year 2017 [1]. This crop is grown
in regions with temperatures ranging from 26 ◦C to 30 ◦C in the monsoon season (June to
October) and 17 ◦C to 22 ◦C in the post monsoon (November to March) season. It is mainly
grown in well drained black cotton soils with a pH ranging from 7.0 to 8.5 [2]. Pigeon Pea is
highly recommended for developing economies as a part of a balanced diet to fill the protein
based nutritional gap, and its seeds and leaves are also used in medicinal applications.
Thus, the Pigeon Pea crop is immensely important for developing economies like India and
helps in maintaining the sustainable productivity of small holder cropping systems.

In recent years, the technological advancements in the data acquisition systems have
made a majority of the geospatial technology affordable and accessible to the agricultural
community [3–5]. One such application of remote sensing in the field of agriculture is the
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identification and mapping of specific crops that enables the determination of the acreage
and spatial distribution of individual crops [6,7]. Multispectral sensor-based satellites
acquire multi-band spectral data with regular temporal coverage. Thus, these multispectral
satellites are an important resource for developing approaches that require spectral and
temporal remote sensing information simultaneously. Since many different crops are grown
in the vicinity of each other in large scale farming, the spectral properties of the target crop
may overlap with those of the nearby crops, thereby resulting in faulty crop maps [8,9].The
literature of crop mapping using multispectral remote sensing data establishes that using a
single date imagery is a challenging task and yields a less accurate classification of crops.
Temporal multispectral images have been effectively used for different applications of
remote sensing and have delivered more accurate results for multiple studies as compared
to single date images [10–14]. Similarly, multiple studies have developed methods based on
temporal multispectral data in agricultural applications including specific crop identifica-
tion [15,16]. The motivation for using temporal images is that identical crops are spectrally
separable at some point of time during the growing season. This requires multi-date data
to study the spectral signatures and assist algorithms to perform the task more efficiently.
Thus, the problem of distinguishing spectrally similar crops and error in crop mapping can
be resolved by adopting a temporal approach that helps in distinguishing different crops.
In this regard, satellite based temporal multispectral data hold great potential to resolve
the existing challenges for crop separation and identification.

Apart from temporal data requirements, crop mapping and identification demands
robust algorithms that are sensitive to the spectral and temporal information of the multi-
spectral data [17–20]. Different computer vision techniques have been applied depending
upon the application in the field of agriculture. Wavelet and Fourier based techniques
have been used to study crop phenology, k-means and the Support vector machine (SVM)
and the Random forest (RF) algorithm, performed accurately for crop/fruit grading and
techniques such fuzzy algorithms and discriminant analysis for the identification of specific
crops [21–24]. Especially, the SVM and RF have been most popularly used among the
machine learning algorithms for various remote sensing applications. However, the SVM
does not perform well if the target classes have a high spectral overlap (e.g. spectral overlap
between two identical crops) [25]. The RF algorithm is stable, less impacted by noise and
reduces variance to improve accuracy, but has a greater parameter complexity, requires
high computational power and has more risk of overfitting [26]. Recently, deep learning
techniques are becoming popular and have been used for performing different tasks in
agriculture, such as crop type classification (customised CNN), plant disease detection
(AlexNet, LeNet) and prediction of soil moisture and other biophysical parameters (Deep
belief networks) [27–30]. Although, the use of such advanced techniques requires expertise
in the domain, and a large training dataset for the training of networks is required [31].

Fuzzy algorithms work on the principle of “one pixel—several classes”, where each
pixel holds a membership value for each of the class [32]. The unique feature of a fuzzy
approach is the presence of a membership function, which determines the membership
grade of a pixel whose values lie between [0, 1]. The closer the value of the membership
grade is to 1, the more the pixels belong to that particular class. The conventional Fuzzy
c-Means (FCM) algorithm uses a hyperline constraint that sums the membership values of
a pixel to 1 [33,34]. Hence, as an improvement to the existing FCM algorithm, a Possibilistic
c-Means approach was developed by Krishnapuram & Keller [35] where the hyperline
constraint was relaxed and a noise clustering algorithm was introduced where the outliers
or the noisy points are dumped into a separate noise cluster (NC) class. Hence, this
algorithm contains an additional class comprising of all the noisy points and, in the absence
of training data, the NC algorithm does not forcefully allocate classes to data points and
treats them as noise. A few studies [36–38] have demonstrated the efficiency of PCM in
handling mixed pixels by extracting a single class of interest from mixed pixels using
satellite multispectral data. The unique approach of the study was the extraction of a
single class independent of the presence of other classes in the image. Thus, a fuzzy PCM
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approach helps in extracting a specific class in an image with a high spectral overlap and
simultaneously deals with noise of a small training dataset exhibiting a low probability
of overfitting.

The innovation that could be found in this research work is that a unique approach of
“Individual Sample as Mean” (ISM) has been proposed and employed where the individual
training sample itself is accounted as a mean parameter for the fuzzy PCM classifier against
the conventional approach of using the statistical “mean” from the training data. The
statistical parameters obtained from the training data are not representative of the variations
existing within a field. Various factors, such as non-uniformly applied water, fertilisers and
pesticides, could result in local variations within a crop field. This element of heterogeneity
is detrimental to the classification accuracy, thereby hampering specific crop mapping.
The proposed ISM approach is far superior as the heterogeneity is supressed when the
individual samples in the training data were considered as the mean input parameter.
Hence, this research work bridges the research gap of not exploiting the potential of fuzzy
approaches in the handling of heterogeneity. Further, the effect of sample size in the
handling of heterogeneity was also studied. In addition to this, a novel approach of the
Class Based Sensor Independent-Modified Soil-Adjusted Vegetation Index 2 (CBSI-MSAVI2)
was applied in this research work. This Class Based Sensor Independent approach ensures
the maximum enhancement of target crop class in temporal domain which cannot be
assured by the conventional band combinations of NIR and Red bands used in the usual
MSAVI2. In totality, this research work aims to study the effect of the training parameter
concept and sample size in the due process of classification by means of a fuzzy PCM
(Possibilistic c-Means) approach for specific Pigeon Pea crop mapping.

2. Study Area and Datasets
2.1. Study Area

The J Bhupalpally District in Telangana state of India was selected as the study area for
this research work. This district lies between latitudes 18◦9′10.312′′ N and 18◦52′13.835′′ N
and longitudes 79◦33′27.045′′ E and 80◦20′57.83′′ E. This district covers an area of 2293 Sq. Km
spanning over 223 villages. The map of the study area is shown in Figure 1.
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Figure 1. Study Area for Pigeon Pea crop identification, J Bhupalpally District, Telangana state, In-
dia. 
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(BOA) reflectance has been utilised for this study. In other words, the atmospherically 
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The band details of the MSI sensor onboard Sentinel 2 that were used for the study 
are shown in Table 2. 
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Figure 1. Study Area for Pigeon Pea crop identification, J Bhupalpally District, Telangana state, India.
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2.2. Datasets

In this research work, temporal data were acquired from Sentinel 2A/2B remote sens-
ing satellites. Among the wide range of products, the dataset with Bottom of Atmosphere
(BOA) reflectance has been utilised for this study. In other words, the atmospherically
corrected Level-2 product was considered [39]. A total of 12 imageries were acquired for
the period ranging from June 2019 to February 2020 as shown in Table 1.

Table 1. List of Sentinel 2 Temporal datasets used in the study.

Study Site Sentinel 2A
(L2A Product)

Sentinel 2B
(L2A Product)

J Bhupalpally
District

(Telangana)

13 June2019 18 July 2019
10 November 2019 15 November 2019
20 December 2019 25 November 2019
30 December 2019 15 December 2019
18 February 2020 24 January 2020

13 February 2020
23 February 2020

The band details of the MSI sensor onboard Sentinel 2 that were used for the study are
shown in Table 2.

Table 2. Bands of MSI sensor onboard Sentinel 2 used in the study.

Band Details Resolution

Band 2-Blue (490 nm) 10 m
Band 3-Green (560 nm) 10 m
Band 4-Red (665 nm) 10 m

Band 5-Red edge (705 nm) 20 m
Band 6-Red edge (740 nm) 20 m
Band 7-Red edge (783 nm) 20 m

Band 8-NIR (842 nm) 10 m
Band 8A-Red Edge (865 nm) 20 m

Band 11-SWIR (1610 nm) 20 m
Band 12-SWIR (2190 nm) 20 m

3. Methods
3.1. Possibilistic c-Means Algorithm (PCM)

The Possibilistic c-means algorithm (PCM) was introduced by Krishnapuram and
Keller [35] to deal with the short comings of fuzzy c-means algorithm. This approach is best
suited for specific crop mapping as the untrained classes do not affect the classified output,
thereby facilitating single-class extraction. The objective function of the PCM classifier is
given in Equation (1):

Jpcm(U, V) =
c

∑
i=1

N

∑
k=1

µk
m
i D(xkvi) +

c

∑
i=1

ηi

N

∑
k=1

(1− µki)ˆm (1)

The function is subject to below shown constraints (Equations (2)–(4))

max︷︸︸︷
i µki > 0 ∀ k (2)

N <
N

∑
k=1

µki > 0 for (3)

0 ≤ µki ≤ 1 ∀ k, i (4)
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where,
′η′i is any suitable positive number,
‘m’ is called fuzzifier or weighted exponent, 1 < m < ∞.
According to the first term of Equation (2), the separation between feature vector and

prototype vector should be as low as possible, while the second term (Equation (2)) forces
the membership value to be as high as possible. In PCM, as ‘m’ increases, the possibility of
pure pixels occurring in a class decreases [40]. From Equation (2), the membership values
for PCM can be estimated as shown in Equation (5);

µki =
1

1 +
(

D(xk ,vi
ηi

) 1
m−1

(5)

where ηi can be estimated as Equation (6):

ηi = K× ∑N
k=1 µm

ki D(xk, vi)

∑N
k=1 µm

ki

(6)

where,
K = 1, constant,
ηi is called band width parameter and it is basically a distance at which membership

to a class is equal to 0.5.

3.2. CBSI-MSAVI2 Indices

This research work proposes a novel approach of using Class-Based Sensor Indepen-
dent Modified Soil Adjusted Vegetation Index 2 (CBSI-MSAVI2) for the dimensionality
reduction. The usage of CBSI-MSAVI2 index ensures maximum enhancement of the target
crop, without the need for a deeper knowledge of the sensor specifications. In addition
to this, the usage of CBSI-MSAVI2 index ensures the spectral dimensionality reduction
while preserving the temporal dimensionality. The formula used to calculate CBSI-MSAVI2
is mentioned in Equation (7), where ρmax and ρmin denotes maximum and minimum re-
flectance values. The bands NIR and Red in the calculation of MSAVI2 [41] have been
replaced with ρmax and ρmin.

CBSI −MSAVI2 =
2(ρmax) + 1−

√
(2(ρmax) + 1)2 − 8(ρmax − ρmin)

2

2
(7)

3.3. Methodology Adopted

The temporal data acquired over the period were subjected to preprocessing, where
only the required ten bands (mentioned in Table 2) were considered and resampled to
10 m spatial resolution. These resampled data were taken as the input for temporal indices
database generation. Initially, various vegetation indices were applied on the dataset to
reduce the spectral dimensionality while retaining the temporal dimensionality. Different
band combinations considered for generating those indices are maximum and minimum
reflectance bands for CBSI-MSAVI2, NIR and Red for MSAVI2 [41] and NIR and Red Edge1
band to generate MSAVI2RE1 [42].

Separability Analysis was carried out on these temporal indices databases to determine
the optimal number of temporal images. Since CBSI-MSAVI2 index produced the maximum
Euclidean separation distance of Pigeon Pea with respect to the other crops in the region
like Cotton, this index was chosen for further classification. The optimal dates were chosen
based on the maximum unique information extracted towards Pigeon Pea phenology.
The selected temporal dates from the temporal indices database were layer stacked and
converted to the Generic Binary format which is compatible with the in-house Java-based
Subpixel Multispectral Image Classifier (SMIC) tool [43].
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Using this layer stacked input dataset, different signature samples were created rang-
ing from 5 sample points up to 60 points to study the effect of sample size on the classifica-
tion. The sampling was carried out six times in order to generate the signature files with 5,
10, 15, 20, 25 and 60 samples. The Java-based in-house SMIC tool was used for the PCM
classification. In addition to the conventional PCM classification where Mean is taken as
the input parameter [44], Individual Samples as Mean (ISM) based PCM classification was
also carried out by means of this tool. In this approach, the entire sample is taken as the
input parameter instead of considering the statistical mean.

The effect of training concept was experimented by making use of the same signature
data of training samples without any kind of alteration. The accuracy assessment was
conducted using the Mean Membership Difference (MMD) method. Basically, the difference
of mean of membership values of the test fields (Cotton and Pigeon Pea) was calculated
with respect to the training fields (Pigeon Pea crop). The methodology followed in this
research work is shown in Figure 2.
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Figure 2. Proposed Methodology of research work. 
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Figure 2. Proposed Methodology of research work.

4. Results& Discussion
4.1. Database of Generated Temporal Indices—CBSI-MSAVI2

The maximum separation distance of the target Pigeon Pea crop was obtained only
from the temporal CBSI-MSAVI2 database, thereby making it the most suitable index for this
study. In the study [45], it was shown that the Class-Based Sensor Independent Approach
is simpler and better for the extraction of single class. This research work proposes a
novel Class-Based Sensor Independent-Modified Soil Adjusted Vegetation Index (CBSI-
MSAVI2) approach for spectral dimensionality reduction while preserving the temporal
dimensionality. The usage of the CBSI-MSAVI2 index ensures maximum enhancement of
the target Pigeon Pea crop class, without the need for a deeper knowledge regarding the
sensor bands. The in-house SMIC tool was used to generate this index. The different bands
as maximum and minimum reflectance used in CBSI-MSAVI2 of the temporal images were
shown in Table 3.
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Table 3. CBSI-MSAVI2—Maximum and Minimum Reflectance Bands for Temporal indices that
ensure maximum enhancement of the target Pigeon Pea crop class.

Date Minimum Band Maximum Band

13 June 2019 Band 2—Blue Band 11—SWIR
18 July 2019 Band 2—Blue Band 8A—Red Edge

10 November 2019 Band 2—Blue Band 7—Red Edge
15 November 2019 Band 2—Blue Band 8A—Red Edge

25 November Band 2—Blue Band 8A—Red Edge
15 December 2019 Band 2—Blue Band 8A—Red Edge
30 December 2019 Band 2—Blue Band 8A—Red Edge

24 January 2020 Band 2—Blue Band 11—SWIR
13 February 2020 Band 2—Blue Band 11—SWIR
18 February 2020 Band 2—Blue Band 11—SWIR
23 February 2020 Band 2—Blue Band 11—SWIR

The band ratios computed at each of the temporal dates are shown in the Figure 3.
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Figure 3. Graph of CBSI-MSAVI2 indices versus temporal dates.

The band ratio (0.791) peaks in the month of November indicating the peak of the crop
growth. Gradually, the ratio decreases over the months January–February, coinciding with
the harvest period. Hence, the growth cycle of the Pigeon Pea crop is better modelled using
CBSI-MSAVI2.

4.2. Separability Analysis and Selection of Optimal Dates

The separability analysis was carried out for the target crop, Pigeon Pea with other
vegetation patches, plantation and the Cotton crop grown in the study area, to find out
optimum number of dates. Out of all the indices used, the CBSI-MSAVI2 produced the max-
imum Euclidean Separation of Cotton [46], and had also produced the highest Euclidean
separation on using the Class Based Sensor Independent index. Basically, the Euclidean
separation distance between the Pigeon Pea crop and the other crops has been maximised,
starting with single date indices data to reduce the spectral overlap. Once the separation
distance starts getting constant, the optimum dates were selected from that point. This way,
the selected optimum dates ensure the maximum extraction of Pigeon Pea phenology for
the best results. The result of separability analysis for CBSI-MSAVI2 has been shown in
Table 4.
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Table 4. Separability analysis using CBSI-MSAVI2 temporal indices images for the selection of best
temporal dates to map Pigeon Pea crop with spectrally least similar cotton crop.

No. of Images Date Combinations Min Separability Distance

1 5 15

2 2, 5 40

3 1, 2, 5 47

4 1, 2, 4, 5 54

5 1, 2, 4, 5, 8 57

6 1, 2, 4, 5, 8, 10 59

7 1, 2, 3, 4, 5, 8, 10 60

8 1, 2, 3, 4, 5, 7, 8, 10 60

9 1, 2, 3, 4, 5, 7, 8, 9, 10 60

10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 60

Note: Selected dates 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 correspond to 13 June (2019), 18 July (2019), 10 November (2019),
25 November (2019), 15 December (2019), 30 December (2019), 24 January (2020), 13 February (2020), 18 February
(2020) and 23 February (2020). It has been found Cotton crop was spectrally close to Pigeon Pea crop, we tried to
keep it spectrally far using optimized temporal indices database.

A closer look at Table 4 reveals the fact that the separability distance becomes almost
constant at 59–60. This value was attained while taking six date temporal image com-
binations. Hence the dates corresponding to the number of temporal images (6) are the
optimum dates, which are: 13 June (2019), 18 July (2019), 25 November (2019), 15 December
(2019), 13 February (2020) and 23 February (2020) from Table 4. In other words, these dates
capture the unique phenological information of the target Pigeon Pea crop to its maximum
extent, which is helpful for the level-2 classification.

4.3. Optimising Weighted Exponent (m) Parameter

The value of “m” was varied from 1.1 to 3 to determine the optimised value to be used
for the classification. For each of the outputs obtained by varying the value of m, MMD
analysis was carried out to find the best result. The results were analysed by comparing
the membership values of Pigeon Pea training fields with those of Pigeon Pea and Cotton
Test fields. This is a two-pronged approach of examining the difference in membership
values within the Pigeon Pea field and the extent of separation achieved with respect to
the spectrally similar Cotton crop. The performance of the classification has not only been
judged by the proximity of the Pigeon Pea training fields to the Pigeon Pea test fields, but
also with the departure attained from the Cotton test fields, as this was spectrally closest
crop to Pigeon Pea crop. As ‘m’ increases the chances of occurrence fuzziness in the output
increases. In other words, when the value of m is closer to 1, it indicates a hard classification
output. The research work [47], which had used a Possibilistic c-means classifier with a
hypertangent (tanh) kernel for wheat (Triticum aestivum) identification, evaluated that
for 2.7, 2.5, and 2.5 values of the weighted constant (m), images of 4 date combinations
from Formosat-2 and Landsat-8 (Operational Land Imager) sensors represent the nicely
separated wheat crop from other vegetation.

It was noted that the difference in the membership value remained almost constant in
the case of spectrally similar Cotton for an ‘m’ value of 2.1. On the other hand, the MMD
value for Pigeon Pea remained closer to 0. Thus, the optimised m value used for PCM
classification was 2.1. The table of MMD values against the chosen “m” for Pigeon Pea and
Cotton are shown in Tables 5 and 6 and Tables 7 and 8, respectively. Thus, the membership
values attained at both Pigeon Pea test fields and Cotton test fields were compared with
the membership values at training fields of Pigeon Pea in order to get an insight into the
respective proximity and separation achieved by the classification.
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Table 5. Varying ‘m’ values with MMD exhibiting Proximity of Pigeon Pea Training Fields to the Pigeon Pea Test Fields—Mean training parameter based
PCM classifier.

‘M’ Value
Membership Values from Testing Site—Pigeon Pea Mean Value at

Test Site
Mean Value at
Training Site MMD

1 2 3 4 5 6

1.1 0.996078 0.996078 0.996078 0.996078 0.996078 0.992157 0.995425 0.99607843 0.000654
1.5 0.992157 0.992157 0.996078 0.996078 0.996078 0.992157 0.994118 0.99542484 0.001307
2.0 0.937255 0.945098 0.956863 0.945098 0.941176 0.945098 0.945098 0.94705882 0.001961
2.1 0.921569 0.929412 0.941176 0.929412 0.92549 0.941176 0.931373 0.93202614 0.000654
2.2 0.905882 0.917647 0.929412 0.917647 0.909804 0.92549 0.917647 0.91830065 0.000654
2.3 0.890196 0.901961 0.913725 0.901961 0.894118 0.901961 0.900654 0.90261438 0.001961
2.4 0.870588 0.890196 0.886275 0.909804 0.866667 0.886275 0.884967 0.88823529 0.003268
2.5 0.854902 0.870588 0.866667 0.898039 0.85098 0.870588 0.868627 0.87385621 0.005229
2.6 0.839216 0.835294 0.858824 0.882353 0.835294 0.854902 0.85098 0.85947712 0.008497
2.7 0.827451 0.819608 0.843137 0.870588 0.823529 0.843137 0.837908 0.84705882 0.00915
2.8 0.811765 0.807843 0.831373 0.858824 0.811765 0.831373 0.82549 0.83398693 0.008497
2.9 0.8 0.796078 0.819608 0.847059 0.8 0.819608 0.813725 0.82156863 0.007843
3.0 0.788235 0.784314 0.807843 0.835294 0.788235 0.807843 0.801961 0.81111111 0.00915

Table 6. Varying ‘m’ values with MMD exhibiting Proximity of Pigeon Pea Training Fields to the Pigeon Pea Test Fields—ISM training parameter based PCM classifier.

‘M’ Value
Membership Values from Testing Site—Pigeon Pea Mean Value at

Test Site
Mean Value at
Training Site MMD

1 2 3 4 5 6

1.1 0.996078 0.996078 0.996078 0.996078 0.996078 0.996078 0.996078 0.996078 0
1.5 0.976471 0.976471 0.980392 0.976471 0.980392 0.976471 0.977778 0.976471 0.001307
2.0 0.87451 0.866667 0.878431 0.870588 0.870588 0.866667 0.871242 0.869281 0.001961
2.1 0.854902 0.847059 0.858824 0.85098 0.85098 0.847059 0.851634 0.84902 0.002614
2.2 0.835294 0.827451 0.839216 0.831373 0.831373 0.827451 0.832026 0.830065 0.001961
2.3 0.815686 0.807843 0.823529 0.811765 0.811765 0.811765 0.813725 0.810458 0.003268
2.4 0.8 0.792157 0.803922 0.796078 0.796078 0.792157 0.796732 0.794771 0.001961
2.5 0.784314 0.776471 0.788235 0.780392 0.788235 0.780392 0.783007 0.779085 0.003922
2.6 0.768627 0.764706 0.776471 0.764706 0.764706 0.764706 0.76732 0.766013 0.001307
2.7 0.756863 0.74902 0.760784 0.752941 0.752941 0.752941 0.754248 0.752288 0.001961
2.8 0.745098 0.737255 0.74902 0.741176 0.741176 0.741176 0.742484 0.74183 0.000654
2.9 0.733333 0.729412 0.741176 0.729412 0.729412 0.729412 0.732026 0.730719 0.001307
3.0 0.72549 0.717647 0.729412 0.721569 0.721569 0.717647 0.722222 0.720261 0.001961
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Table 7. Varying ‘m’ values with MMD exhibiting Departure of Pigeon Pea Training Fields from the Cotton Test Fields—Mean training parameter based
PCM classifier.

‘M’ Value
Membership Values from Testing Site—Cotton Mean Value at

Test Site
Mean Value at
Training Site MMD

1 2 3 4 5 6

1.1 0.011765 0.015686 0.019608 0.019608 0.011765 0.019608 0.01634 0.996078431 0.979739
1.5 0.298039 0.309804 0.313725 0.313725 0.290196 0.317647 0.30719 0.995424837 0.688235
2.0 0.392157 0.4 0.4 0.4 0.388235 0.403922 0.397386 0.947058824 0.549673
2.1 0.403922 0.407843 0.411765 0.411765 0.4 0.415686 0.408497 0.932026144 0.523529
2.2 0.411765 0.415686 0.415686 0.415686 0.407843 0.419608 0.414379 0.918300654 0.503922
2.3 0.415686 0.423529 0.423529 0.423529 0.415686 0.427451 0.421569 0.902614379 0.481046
2.4 0.423529 0.427451 0.427451 0.427451 0.419608 0.431373 0.426144 0.888235294 0.462092
2.5 0.427451 0.431373 0.435294 0.435294 0.423529 0.435294 0.431373 0.873856209 0.442484
2.6 0.431373 0.435294 0.439216 0.439216 0.431373 0.439216 0.435948 0.859477124 0.423529
2.7 0.435294 0.439216 0.439216 0.439216 0.435294 0.443137 0.438562 0.847058824 0.408497
2.8 0.439216 0.443137 0.443137 0.443137 0.435294 0.447059 0.44183 0.833986928 0.392157
2.9 0.443137 0.447059 0.447059 0.447059 0.439216 0.45098 0.445752 0.821568627 0.375817
3.0 0.443137 0.45098 0.45098 0.45098 0.443137 0.45098 0.448366 0.811111111 0.362745

Table 8. Varying ‘m’ values with MMD exhibiting Departure of Pigeon Pea Training Fields from the Cotton Test Fields—ISM training parameter based PCM classifier.

‘M’ Value
Membership Values from Testing Site—Cotton Mean Value at

Test Site
Mean Value at
Training Site MMD

1 2 3 4 5 6

1.1 0.003922 0.007843 0.003922 0.003922 0.003922 0.003922 0.004575 0.996078 0.991503
1.5 0.270588 0.278431 0.270588 0.270588 0.258824 0.278431 0.271242 0.976471 0.705229
2.0 0.380392 0.380392 0.380392 0.380392 0.372549 0.380392 0.379085 0.869281 0.490196
2.1 0.388235 0.392157 0.388235 0.388235 0.384314 0.392157 0.388889 0.84902 0.460131
2.2 0.396078 0.4 0.396078 0.396078 0.392157 0.4 0.396732 0.830065 0.433333
2.3 0.403922 0.407843 0.403922 0.403922 0.4 0.407843 0.404575 0.810458 0.405882
2.4 0.411765 0.415686 0.411765 0.411765 0.407843 0.415686 0.412418 0.794771 0.382353
2.5 0.415686 0.419608 0.419608 0.419608 0.411765 0.419608 0.417647 0.779085 0.361438
2.6 0.423529 0.423529 0.423529 0.423529 0.419608 0.423529 0.422876 0.766013 0.343137
2.7 0.427451 0.427451 0.427451 0.427451 0.423529 0.427451 0.426797 0.752288 0.32549
2.8 0.431373 0.431373 0.431373 0.431373 0.427451 0.431373 0.430719 0.74183 0.311111
2.9 0.435294 0.435294 0.435294 0.435294 0.431373 0.435294 0.434641 0.730719 0.296078
3.0 0.439216 0.439216 0.439216 0.439216 0.435294 0.439216 0.438562 0.720261 0.281699
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4.4. Classification Results

The objective of this research was to study the effect of the training concept and the
sample size in classification meant for specific Pigeon Pea crop mapping. The effect of
the training concept incorporates “Individual Samples” directly to be taken as the mean
input parameter without going with the conventional “mean”. With regard to this, six
training sample data were generated, consisting of 5, 10, 15, 20, 25 and 60 training sample
points. In general classification, according to [48],“10*n” samples size have to be considered
for training, ‘n’ being the number of bands in the input image. Here, since 6 optimum
dates were chosen, according to the 10*n rule, meaning 10*6, i.e., 60 samples needed to
be chosen for training purpose. The subset image taken is shown in Figure 4 and the
classification results for the signature file (5 samples—minimum) with the two different
training parameters are shown in Figure 5.
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Figure 4. Subset image from district image, dated 10 November 2019. Figure 4. Subset image from district image, dated 10 November 2019.
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Figure 5. PCM Classification output with five samples signature file, (a) conventional mean PCM 
output (b) ISM based PCM output. 

4.5. Accuracy Assessment Using MMD 
The Mean Membership Difference (MMD) method has been used to quantitatively 

analyze the output images generated. Basically, the difference of the mean of membership 
values of the test fields (Cotton and Pigeon Pea) with training fields were calculated with 
respect to the training fields of the Pigeon Pea crop. It is expected that the MMD for Pigeon 
Pea test fields were closer to 0 (proximity) and that of the Cotton fields were tending to-
wards 1 (separation). This two-pronged approach of studying the MMD values from the 
perspectives of Proximity and Separation helps in a better comprehension and evaluation 
of the classifier performance. The MMD values for the Pigeon Pea Test field while using 
different training data with various sample sizes using a Mean PCM were shown in Table 
9, while considering an optimum m value of 2.1. 

Table 9. Effect of increase in sample size by comparing membership values between Pigeon Pea 
Training fields and Pigeon Pea Test fields for proximity—Mean training parameter based PCM clas-
sifier. 

Number 
of 
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Membership Values from Testing Site—Pigeon Pea Mean 
Value at 
Test Site 

Mean Value 
at Training 

Site 
MMD  Variance 

1 2 3 4 5 6 

5 0.960784 0.956863 0.980392 0.968627 0.960784 0.976471 0.96732 0.968409586 0.019608 0.019172 
10 0.956863 0.956863 0.980392 0.964706 0.956863 0.976471 0.965359 0.966775599 0.018954 0.024074 
15 0.964706 0.960784 0.984314 0.968627 0.964706 0.980392 0.970588 0.971568627 0.017647 0.019281 
20 0.968627 0.964706 0.984314 0.972549 0.968627 0.980392 0.973203 0.973965142 0.016993 0.012309 
25 0.972549 0.964706 0.988235 0.976471 0.972549 0.984314 0.976471 0.977124183 0.015686 0.015686 
60 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 0.984204793 0.013072 0.019695 

It was observed that the MMD value ranges between 0.013–0.019 while varying the 
number of samples. The least MMD value was achieved while using 60 samples. The 
MMD values for Cotton Test fields from Mean PCM outputs is shown in Table 10, while 
considering optimum m value of 2.1. 

Figure 5. PCM Classification output with five samples signature file, (a) conventional mean PCM
output (b) ISM based PCM output.

4.5. Accuracy Assessment Using MMD

The Mean Membership Difference (MMD) method has been used to quantitatively
analyze the output images generated. Basically, the difference of the mean of membership
values of the test fields (Cotton and Pigeon Pea) with training fields were calculated with
respect to the training fields of the Pigeon Pea crop. It is expected that the MMD for Pigeon
Pea test fields were closer to 0 (proximity) and that of the Cotton fields were tending
towards 1 (separation). This two-pronged approach of studying the MMD values from the
perspectives of Proximity and Separation helps in a better comprehension and evaluation
of the classifier performance. The MMD values for the Pigeon Pea Test field while using
different training data with various sample sizes using a Mean PCM were shown in Table 9,
while considering an optimum m value of 2.1.

It was observed that the MMD value ranges between 0.013–0.019 while varying the
number of samples. The least MMD value was achieved while using 60 samples. The
MMD values for Cotton Test fields from Mean PCM outputs is shown in Table 10, while
considering optimum m value of 2.1.

The MMD value for Cotton fields ranges from 0.31 to 0.33 for using different sample
signature files. The results of the MMD for the Pigeon Pea test fields using an ISM–PCM
classification are mentioned in Table 11, while considering an optimum m value of 2.1.

The comparison of the variance values against sample size for both the approaches is
mentioned in Figure 6.
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Training fields and Pigeon Pea Test fields for proximity—ISM training parameter based PCM clas-
sifier. 

Number 
of 

Samples 

Membership Values from Testing Site—Pigeon Pea 
Mean 

Value at 
Test Site 

Mean 
Value at 
Training 

Site 

MMD  Variance 
1 2 3 4 5 6 

5 0.964706 0.952941 0.976471 0.968627 0.972549 0.984314 0.969935 0.994118 0.024183 0.024401 
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15 0.968627 0.988235 0.980392 0.980392 0.980392 0.976471 0.979085 0.996732 0.017647 0.008715 
20 0.968627 0.988235 0.980392 0.980392 0.980392 0.976471 0.979085 0.996732 0.017647 0.008715 
25 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 1 0.01634 0.009695 
60 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 1 0.01634 0.009695 

The comparison of the variance values against sample size for both the approaches 
is mentioned in Figure 6. 

 

Figure 6. Graph of variance versus sample size for both the approaches.

While using the ISM approach, the variance of the Pigeon Pea test field varies from
0.008–0.02, which is lesser when compared to the conventional Mean PCM. This shows
that the heterogeneity within the fields was handled better using this approach. The
MMD values for Cotton field using the ISM–PCM classification is shown in Table 12, while
considering an optimum m value of 2.1.

The MMD value for Cotton ranges from 0.30–0.35, which is slightly better when
compared to the values obtained using the conventional Mean PCM, thereby exhibiting a
better separation from Pigeon Pea. It was observed that as the sample size kept increasing,
the MMD value for the Pigeon Pea test fields also kept decreasing. In the case of Cotton, a
decrease in MMD values is seen for the ISM approach, whereas there is a steady increase of
the same in the conventional approach.

Ref. [49] followed a temporal approach in the specific mapping of Sugarcane Ratoon.
Time series data from LISS-III and AWiFS sensors were separately subjected to the Possi-
bilistic c-Means classifier to extract single class sub-pixel information. A Fuzzy Modified
Possibilistic c-Means (MPCM) classifier was used by [50] to identify and map the vegetation
cover in Newai town of Rajasthan. In this study, data from Sentinel -1 and Sentinel -2
missions were used to fulfil the required temporal dates to incorporate phenological and
sessional variation. Thus, the incorporation of dual-sensor data helped in better mapping
of the agro-geography. The transplanted paddy crops were mapped using MPCM and
Noise Clustering algorithms by [46]. Due to the presence of cloud cover, a single optical
sensor was not enough to provide the required temporal scenes. Two optical datasets
(Sentinel-2 and Landsat-8) and one SAR dataset (Sentinel-1) were used for this work. The
Noise Clustering algorithm had outperformed MPCM in the mapping of transplanted
paddy crops.
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Table 9. Effect of increase in sample size by comparing membership values between Pigeon Pea Training fields and Pigeon Pea Test fields for proximity—Mean
training parameter based PCM classifier.

Number of
Samples

Membership Values from Testing Site—Pigeon Pea Mean Value
at Test Site

Mean Value at
Training Site MMD Variance

1 2 3 4 5 6

5 0.960784 0.956863 0.980392 0.968627 0.960784 0.976471 0.96732 0.968409586 0.019608 0.019172
10 0.956863 0.956863 0.980392 0.964706 0.956863 0.976471 0.965359 0.966775599 0.018954 0.024074
15 0.964706 0.960784 0.984314 0.968627 0.964706 0.980392 0.970588 0.971568627 0.017647 0.019281
20 0.968627 0.964706 0.984314 0.972549 0.968627 0.980392 0.973203 0.973965142 0.016993 0.012309
25 0.972549 0.964706 0.988235 0.976471 0.972549 0.984314 0.976471 0.977124183 0.015686 0.015686
60 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 0.984204793 0.013072 0.019695

Table 10. Effect of increase in sample size by Comparing Membership values between Pigeon Pea Training fields and Cotton Test fields for separation—Mean
training parameter based PCM classifier.

Number of
Samples

Membership Values from Testing Site—Cotton Mean Value at
Test Site

Mean Value at
Training Site MMD

1 2 3 4 5 6

5 0.705882 0.670588 0.705882 0.682353 0.603922 0.643137 0.668627 0.968409586 0.318301
10 0.705882 0.670588 0.705882 0.682353 0.603922 0.643137 0.668627 0.966775599 0.315686
15 0.701961 0.666667 0.701961 0.682353 0.603922 0.639216 0.666013 0.971568627 0.322222
20 0.698039 0.662745 0.698039 0.678431 0.6 0.639216 0.662745 0.973965142 0.327451
25 0.694118 0.658824 0.694118 0.670588 0.592157 0.635294 0.657516 0.977124183 0.334641
60 0.701961 0.666667 0.705882 0.682353 0.603922 0.639216 0.666667 0.984204793 0.330065

Table 11. Effect of increase in sample size by comparing membership values between Pigeon Pea Training fields and Pigeon Pea Test fields for proximity—ISM
training parameter based PCM classifier.

Number of
Samples

Membership Values from Testing Site—Pigeon Pea Mean Value
at Test Site

Mean Value at
Training Site MMD Variance

1 2 3 4 5 6

5 0.964706 0.952941 0.976471 0.968627 0.972549 0.984314 0.969935 0.994118 0.024183 0.024401
10 0.968627 0.988235 0.980392 0.980392 0.980392 0.976471 0.979085 1 0.020915 0.008388
15 0.968627 0.988235 0.980392 0.980392 0.980392 0.976471 0.979085 0.996732 0.017647 0.008715
20 0.968627 0.988235 0.980392 0.980392 0.980392 0.976471 0.979085 0.996732 0.017647 0.008715
25 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 1 0.01634 0.009695
60 0.980392 0.972549 0.988235 0.984314 0.984314 0.992157 0.98366 1 0.01634 0.009695
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Table 12. Effect of increase in sample size by comparing membership values between Pigeon Pea Training fields and Cotton Test fields for separation—ISM training
parameter based PCM classifier.

Number of
Samples

Membership Values from Testing Site—Cotton Mean Value at
Test Site

Mean Value at
Training Site MMD

1 2 3 4 5 6

5 0.670588 0.643137 0.678431 0.658824 0.588235 0.619608 0.643137 0.994118 0.35098
10 0.654902 0.694118 0.647059 0.65098 0.717647 0.643137 0.667974 1 0.332026
15 0.643137 0.686275 0.643137 0.639216 0.713725 0.635294 0.660131 0.996732 0.336601
20 0.643137 0.686275 0.643137 0.639216 0.713725 0.635294 0.660131 0.996732 0.336601
25 0.72549 0.690196 0.733333 0.705882 0.627451 0.658824 0.690196 1 0.309804
60 0.72549 0.690196 0.733333 0.705882 0.627451 0.658824 0.690196 1 0.309804
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In all of these works, pixel-based classifiers had used means or variance-covariance sta-
tistical parameters generated from training samples. In reality, these statistical parameters
do not represent in totality about variations existing within class.

The research work of [50] aimed at the identification of different crops grown in a
region by means of the fuzzy PCM algorithm. The MMD attained between two different
crops (viz., mustard and wheat) in the study was close to 0.077, thereby indicating very
little separation. Although the crops used in [50] are different from that of the current
research work, better separation could have been achieved by employing the ISM-based
PCM classification. Here in our research work, an MMD of up to 0.35 was attained on using
this unique approach.

5. Conclusions

The training parameter concept plays an important role in the classification output.
When the individual samples concept was considered as an input training parameter, a
better representation of the field was achieved through the PCM classifier. The variance
of the MMD values of the Pigeon Pea test fields indicates that the ISM–PCM classification
handles heterogeneity in a better way. The variance value achieved in the conventional
method was 0.019, whereas that for the ISM approach was 0.008.

Although, general classification requires the presence of a minimum of 60 samples
(considering 10*n rule), but the PCM algorithm works well even in the presence of 5 training
samples. On increasing the training samples from 5 to 60, the MMD value of the Pigeon Pea
test fields kept decreasing from 0.019 to 0.013. Even the MMD values for the Cotton fields
showed a decreasing trend with an increase in the number of samples. Since, the variation
in MMD values was quite nominal, it can be concluded that the effect of sample size was not
significant in the fuzzy PCM classification for MMD values. However, the variance value
was decreasing with the increasing sample size, especially in the ISM training approach.
This algorithm exhibits a robust performance even in the presence of a minimal number of
training samples, say 15 training samples onwards.

Author Contributions: All the authors P.S., A.K., S.R.K. and P.N. contributed equally in carrying out
the research work and in the preparation of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data were available freely from Sentinel -2A Copernicus site.

Acknowledgments: The authors would like to thank the regional station of the Indian Council
of Agricultural Research—National Bureau of Plant Genetic Resources (ICAR-NBPGR) situated in
Hyderabad for providing the ground truth data of Pigeon pea in the J Bhupalpally region. The
authors also express their gratitude towards the Regional Agricultural Research Station in Warangal
for the timely support extended.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GoI. Annual Report 2018-19. Ministry of Agriculture & Farmers Welfare; Government of India: New Delhi, India, 2019; pp. 1–224.
2. Pigeonpea_E.pdf. Available online: https://farmer.gov.in/imagedefault/Other_Pulses/Pigeonpea_E.pdf (accessed on

19 November 2021).
3. Rosenthal, G. Economic and Social Council. Oxford Handb. United Nations 2008, 00424, 135–148. [CrossRef]
4. Xue, Y.; Li, Y.; Guang, J.; Zhang, X.; Guo, J. Small satellite remote sensing and applications—History, current and future. Int. J.

Remote Sens. 2008, 29, 4339–4372. [CrossRef]
5. Millan, R.M.; von Steiger, R.; Ariel, M.; Bartalev, S.; Borgeaud, M.; Campagnola, S.; Castillo-Rogez, J.C.; Fléron, R.; Gass, V.;

Gregorio, A.; et al. Small satellites for space science: A COSPAR scientific roadmap. Adv. Space Res. 2019, 64, 1466–1517.
[CrossRef]

https://farmer.gov.in/imagedefault/Other_Pulses/Pigeonpea_E.pdf
http://doi.org/10.1093/oxfordhb/9780199560103.003.0007
http://doi.org/10.1080/01431160801914945
http://doi.org/10.1016/j.asr.2019.07.035


Geomatics 2022, 2 123

6. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2019,
236, 111402. [CrossRef]

7. Naik, P.; Kumar, A. A Stochastic Approach for Automatic Collection of Precise Training Data for a Soft Machine Learning
Algorithm Using Remote Sensing Images. In Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing;
Tiwari, A., Ahuja, K., Yadav, A., Bansal, J.C., Deep, K., Nagar, A.K., Eds.; Springer: Singapore, 2021; Volume 1393, pp. 285–297.
[CrossRef]

8. Lark, T.; Schelly, I.; Gibbs, H. Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using
the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [CrossRef]

9. Paliwal, A.; Jain, M. The Accuracy of Self-Reported Crop Yield Estimates and Their Ability to Train Remote Sensing Algorithms.
Front. Sustain. Food Syst. 2020, 4, 25. [CrossRef]

10. Gong, J.; Sui, H.; Ma, G.; Zhou, Q. A review of multi-temporal remote sensing data change detection algorithm. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2008, 37, 757–762.

11. Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource
and Multitemporal Data Fusion in Remote Sensing. arXiv 2018, arXiv:1812.08287.

12. Naik, P.; Dalponte, M.; Bruzzone, L. A comparison on the use of different satellite multispectral data for the prediction of
aboveground biomass. In Image and Signal Processing for Remote Sensing XXVI; International Society for Optics and Photonics:
Bellingham, WC, USA, 2020; Volume 11533, p. 1153315. [CrossRef]

13. Naik, P.; Dalponte, M.; Bruzzone, L. Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote
Sensing Data. Remote Sens. 2021, 13, 1282. [CrossRef]

14. Shu, C.; Sun, L. Automatic target recognition method for multitemporal remote sensing image. Open Phys. 2020, 18, 170–181.
[CrossRef]

15. Yan, S.; Yao, X.; Zhu, D.; Liu, D.; Zhang, L.; Yu, G.; Gao, B.; Yang, J.; Yun, W. Large-scale crop mapping from multi-source optical
satellite imageries using machine learning with discrete grids. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102485. [CrossRef]

16. Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping
in the Subtropical Agriculture Region. Sensors 2019, 19, 2401. [CrossRef] [PubMed]

17. Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A
review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [CrossRef]

18. Campos, I.; Gómez, L.G.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping
within-field variability in wheat yield and biomass using remote sensing vegetation indices. Precis. Agric. 2018, 20, 214–236.
[CrossRef]

19. Moumni, A.; Lahrouni, A. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution
Satellite Imagery in a Semiarid Area. Scientifica 2021, 2021, 8810279. [CrossRef] [PubMed]

20. Kumari, M.; Pandey, V.; Choudhary, K.K.; Murthy, C.S. Object-based machine learning approach for soybean mapping using
temporal sentinel-1/sentinel-2 data. Geocarto Int. 2021, 1–19. [CrossRef]

21. Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf.
Telecommun. 2020, 4, 67–90. [CrossRef]

22. Viskovic, L.; Kosovic, I.N.; Mastelic, T. Crop Classification using Multi-spectral and Multitemporal Satellite Imagery with Machine
Learning. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Split, Croatia, 19–21 September 2019; p. 8903738.

23. Saini, R.; Ghosh, S.K. Crop classsification on single date Sentinel-2 Imagery using Random Forest and Suppor Vector Machine.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 683–688. [CrossRef]

24. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
25. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1778–1790. [CrossRef]
26. Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng.

Open Access J. 2014, 2, 602–609. [CrossRef]
27. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674.

[CrossRef]
28. Scheer, C.; Guder, L. Deep Learning in Agriculture: A Systematic Literature Review Deep Learning in Agriculture Três de Maio.

Bachelor Thesis, Faculty of Três de Maio, Tres de Maio, Brazil, 2019. [CrossRef]
29. Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent

Developments; Springer: New York, NY, USA, 2021; Volume 22.
30. Naik, P.; Dalponte, M.; Bruzzone, L. A Disentangled Variational Autoencoder for Prediction of Above Ground Biomass from

Hyperspectral Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 2991–2994. [CrossRef]

31. Tilson, L.; Excell, P.; Green, R. A Generalisation of the Fuzzy C-means Clustering Algorithm. In Proceedings of the International
Geoscience and Remote Sensing Symposium, Remote Sensing: Moving Toward the 21st Century, Edinburgh, UK, 12–16 September
1988; Volume 3, pp. 1783–1784. [CrossRef]

http://doi.org/10.1016/j.rse.2019.111402
http://doi.org/10.1007/978-981-16-2712-5_24
http://doi.org/10.3390/rs13050968
http://doi.org/10.3389/fsufs.2020.00025
http://doi.org/10.1117/12.2572807
http://doi.org/10.3390/rs13071282
http://doi.org/10.1515/phys-2020-0015
http://doi.org/10.1016/j.jag.2021.102485
http://doi.org/10.3390/s19102401
http://www.ncbi.nlm.nih.gov/pubmed/31130689
http://doi.org/10.1016/j.agwat.2020.106081
http://doi.org/10.1007/s11119-018-9596-z
http://doi.org/10.1155/2021/8810279
http://www.ncbi.nlm.nih.gov/pubmed/33968461
http://doi.org/10.1080/10106049.2021.1952314
http://doi.org/10.1080/24751839.2019.1694765
http://doi.org/10.5194/isprs-archives-XLII-5-683-2018
http://doi.org/10.1016/j.compag.2018.02.016
http://doi.org/10.1109/TGRS.2004.831865
http://doi.org/10.1080/21642583.2014.956265
http://doi.org/10.3390/s18082674
http://doi.org/10.13140/RG.2.2.17367.19363
http://doi.org/10.1109/igarss47720.2021.9554415
http://doi.org/10.1109/igarss.1988.569600


Geomatics 2022, 2 124

32. Hung, M.-C.; Yang, D.-L. An efficient Fuzzy C-Means clustering algorithm. In Proceedings of the 2001 IEEE International
Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 225–232. [CrossRef]

33. Sandhya, P.; Kumar, A. A Survey on Fuzzy C-means Clustering Techniques. Ijedr 2017, 5, 1151–1155.
34. Krishnapuram, R.; Keller, J. The possibilistic C-means algorithm: Insights and recommendations. IEEE Trans. Fuzzy Syst. 1996, 4,

385–393. [CrossRef]
35. Singh, A.; Kumar, A.; Upadhyay, P. Modified possibilistic c- means with constraints (MPCM-S) approach for incorporating the

local information in a remote sensing image classification. Remote Sens. Appl. Soc. Environ. 2020, 18, 100319. [CrossRef]
36. Singh, A.; Kumar, A.; Upadhyay, P. A novel approach to incorporate local information in Possibilistic c-Means algorithm for an

optical remote sensing imagery. Egypt. J. Remote Sens. Space Sci. 2020, 24, 151–161. [CrossRef]
37. Singh, A.; Kumar, A. Identification of Paddy Stubble Burnt Activities Using Temporal Class-Based Sensor-Independent Indices

Database: Modified Possibilistic Fuzzy Classification Approach. J. Indian Soc. Remote Sens. 2019, 48, 423–430. [CrossRef]
38. Louis, J. Sentinel 2 MSI—Level 2A Product Definition. Eur. Sp. Agency 2016, 49. Available online: https://sentinel.esa.int/

documents/247904/1848117/Sentinel-2-Level-2A-Product-Definition-Document.pdf (accessed on 22 January 2022).
39. Jankowski, J.A. (Ed.) Inflammation and Gastrointestinal Cancers; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2011. [CrossRef]
40. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ.

1994, 48, 119–126. [CrossRef]
41. Vincent, A.; Kumar, A.; Upadhyay, P. Effect of Red-Edge Region in Fuzzy Classification: A Case Study of Sunflower Crop. J.

Indian Soc. Remote Sens. 2020, 48, 645–657. [CrossRef]
42. Kumar, A.; Ghosh, S.; Dadhwal, V. ALCM: Automatic land cover mapping. J. Indian Soc. Remote Sens. 2010, 38, 239–245. [CrossRef]
43. Krishnapuram, R.; Keller, J. A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1993, 1, 98–110. [CrossRef]
44. Upadhyay, P.; Kumar, A.; Roy, P.S.; Ghosh, S.; Gilbert, I. Effect on specific crop mapping using WorldView-2 multispectral add-on

bands: Soft classification approach. J. Appl. Remote Sens. 2012, 6, 063524-1. [CrossRef]
45. Rawat, A.; Kumar, A.; Upadhyay, P.; Kumar, S. Multisensor temporal approach for transplanted paddy fields mapping using

fuzzy-based classifiers. J. Appl. Remote Sens. 2020, 14, 024524. [CrossRef]
46. Nandan, R.; Kamboj, A.; Kumar, A.; Kumar, S.; Reddy, K.V. Formosat-2 with Landsat-8 Temporal-Multispectral Data for Wheat

Crop Identification using Hypertangent Kernel based Possibilistic classifier. J. Geomat. 2016, 10, 89–95.
47. Jensen, J.R.; Lulla, K. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall Series in Geographic

Information Science; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; ISBN 0-13-145361-0.
48. Misra, G.; Kumar, A.; Patel, N.R.; Zurita-Milla, R. Mapping a Specific Crop—A Temporal Approach for Sugarcane Ratoon. J.

Indian Soc. Remote Sens. 2013, 42, 325–334. [CrossRef]
49. Devinda, C.S.; Kumar, A. Application of fuzzy machine learning algorithm in agro-geography. Khoj Int. Peer Rev. J. Geogr. 2020, 7,

30–46. [CrossRef]
50. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and

challenges in big data analytics. J. Big Data 2015, 2, 1. [CrossRef]

http://doi.org/10.1109/icdm.2001.989523
http://doi.org/10.1109/91.531779
http://doi.org/10.1016/j.rsase.2020.100319
http://doi.org/10.1016/j.ejrs.2020.06.001
http://doi.org/10.1007/s12524-019-01093-4
https://sentinel.esa.int/documents/247904/1848117/Sentinel-2-Level-2A-Product-Definition-Document.pdf
https://sentinel.esa.int/documents/247904/1848117/Sentinel-2-Level-2A-Product-Definition-Document.pdf
http://doi.org/10.1007/978-3-642-03503-6
http://doi.org/10.1016/0034-4257(94)90134-1
http://doi.org/10.1007/s12524-020-01109-4
http://doi.org/10.1007/s12524-010-0030-x
http://doi.org/10.1109/91.227387
http://doi.org/10.1117/1.JRS.6.063524
http://doi.org/10.1117/1.JRS.14.024524
http://doi.org/10.1007/s12524-012-0252-1
http://doi.org/10.5958/2455-6963.2020.00004.1
http://doi.org/10.1186/s40537-014-0007-7

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 

	Methods 
	Possibilistic c-Means Algorithm (PCM) 
	CBSI-MSAVI2 Indices 
	Methodology Adopted 

	Results& Discussion 
	Database of Generated Temporal Indices—CBSI-MSAVI2 
	Separability Analysis and Selection of Optimal Dates 
	Optimising Weighted Exponent (m) Parameter 
	Classification Results 
	Accuracy Assessment Using MMD 

	Conclusions 
	References

