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Abstract: A chemosensor consisting of one single tin oxide nanowire is used to determine the
freshness status of mackerel fish (Scomber scombrus) in a quick and non-invasive way. The tiny
chemoresistive sensor is first tested with pure ammonia and then used to measure the total volatile
basic nitrogen from different samples of fish at different degrees of freshness. The sensor has
proved capable of determining the freshness of a sample in few seconds compared to traditional
methods such as microbial count and chromatography, which take hours. The sensor response
is well correlated with the total viable count (TVC), proving that the total volatile basic nitrogen
is a good way to quickly test the bacterial population in the sample. After calibrating the sensor
(following the degradation of the fish during almost two days), it has been tested with random double
blind samples, proving that it can well discriminate the degree of freshness of the fish preserved at
different temperatures.
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1. Introduction

Food has a profound impact on people’s health, chronic disease risk, and longevity.
Better nutritional quality is achieved also by consuming more fresh products instead
of highly processed foods with additives (artificial food colors, preservatives, etc.). Un-
fortunately, fresh food is subject to deterioration quite rapidly, and this has important
repercussions not only on the food industry, but also on the health of consumers, with
social and health costs [1,2]. Recently, the globalization and the centralization of many
production chains has led to greater distances between the production areas and the con-
sumer and more complex supply chains [3]. Fish is a food that, also thanks to its healthy
properties, is consumed more and more all over the world [4]. For these reasons, it is
increasingly important to develop cheaper and faster non-invasive methods to assess fish
freshness during real time. Until a few years ago, panels of human experts evaluating
appearance, smell, and texture were used [5,6], but this type of procedure is laborious and
not always reliable, which is why the use of sensors has recently become essential.

The main factor limiting the shelf life of fresh fish is the activity of microorganisms.
For this reason, an estimate of total vital counts (TVC) is generally used as a reference and
as a definitive index [7]. After the death of the fish, the amount of microorganisms on its
surface increases and gradually spreads to various tissues [8]. Several methods have been
used to measure the freshness of the fish [5,9]. As microorganisms degrade fish tissues,
they convert trimethylamine oxide into (CH3)3N (trimethylamine or TMA) and (CH3)2NH
(dimethylamine or DMA). At the same time, NH3 (ammonia) is produced through the
decomposition of urea and amino acids by bacteria [10]. These volatiles are collectively
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referred to as TVB-N (total volatile basic nitrogen), and their concentration is considered a
good indicator of fish freshness. Among the most used and accurate systems to analyze
volatile compounds are the headspace methods, which consist of extracting the volatiles
and then separating them and identifying them with chromatographic techniques [5].

Unfortunately, these methods are time-consuming and require trained personnel and
equipment accessible only in the laboratory. So, this type of analysis can only be done on a
sample basis, guaranteeing the freshness of only a small part of the products. Therefore, it
is important to develop non-invasive sensors that are small, cheap, and fast, in order to be
able to extensively monitor the supply chain in real time. A suitable tool for this task, as it is
able to distinguish complex gas mixtures, is the electronic nose: an array of sensors whose
responses are combined together [11,12]. These devices are able to distinguish complex
mixtures of volatile organic compounds that make up the aroma of an agro-food product.
Electronic noses are able to distinguish complex mixtures of volatiles and therefore many
different agro-food products [13–15]. In this case, it is not necessary to evaluate subtle
nuances but to measure a very precise marker (the TVB-N), and therefore a single sensor
can be smaller, cheaper, and easily integrated. Chemoresistors based on semiconducting
metal oxides (SMOs) are ideal candidates for this task: their dimensions are less than
one micron, and they are very simple, since they are basically a resistance that varies by
reacting to the atmosphere around them. Therefore, they can be easily integrated into
portable or wearable devices (mobile phones or smart watches) or into containers used for
transporting fish. The mechanism underlying their detection performance was presented
by Seyama [16], and the latest generation consists of SMO nanostructures. The enormous
surface/volume ratio of the nanostructures (usually nanowires, NWs) greatly improves
the detection performance, allowing gases to be detected down to ranges below ppm
(parts per million). Nanowires can be used as a porous thin film [17] that is grown directly
from the electrodes [18] or even contacted individually [19].

In the present work, the latter method will be used in order to exploit the sensitivity
and the speed of response and recovery of a single nanowire. Using the microbial count
as a reference, the nanosensor has been shown to be able to measure mackerel freshness
non-invasively, quickly, and accurately.

2. Materials and Methods
2.1. Synthesis of SnO2 Nanowires

The tin oxide (SnO2) nanowires were grown in a horizontal quartz tube placed inside
a furnace (Lindberg Blue M, Thermo Fisher Scientific, Waltham, MA, USA) by chemical
vapor deposition (CVD). An alumina boat filled with pure tin monoxide was used as an
evaporation source and placed in the center of the furnace at its maximum temperature.
A silicon wafer square (about 1 × 1 cm2) was used as substrate, deposited with a thin
gold film (about 5 nm) acting as a catalyst, and positioned 1 cm from the alumina boat.
The quartz tube was cleaned by pumping it down to 10−2 mbar and purging it with
high-purity (99.999%) argon. This cycle was repeated three times, and finally, the system
was pumped down to its limit pressure. Then, the temperature was increased from room
temperature (26 ◦C) to 850 ◦C with a slope of 25 ◦C per minute, and the furnace was left
for five minutes at 850 ◦C to thermalize. Then, an oxygen flow of 0.35 standard cubic
centimeters (sccm) was flowed into the system, starting the process. Growth of the NWs
lasted 30 min; then, the system was shut down and allowed to cool. Once the growth was
complete, the samples showed a soft and homogeneous white film.

2.2. Material Characterization

The thin white film grown via CVD was characterized by X-ray diffraction (XRD) using
a Philips Xpert Pro (PANalytical, Westborough, MA, USA) working at 40 kV with CuKα

radiation. Transmission electron microscopy (TEM) investigation was carried out using a
JEM-100CX (JEOL, Tokyo, Japan) operating at 90 kV, and secondary electron microscopy
(SEM) images were acquired with a Hitachi S-4800 (Hitachi, Krefeld, Germany).
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2.3. Fabrication of the Sensor

Then, a piece of the white thin film (a forest of spaghetti-like nanowires) was sonicated
in dimethylformamide for two seconds. The resulting dispersion was dropped onto a
Si/SiO2 wafer by spinning it at 6000 rpm in order to obtain the desired NW density.
A matrix of Ti/Pt (10/250 nm) electrodes was patterned on the dispersed nanowires using
the standard UV lithography technique on the whole wafer.

The pairs of electrodes connected by nanowires were found by combining two tests:
resistance measurement and optical microscopy. The best candidates for single nanowire
devices were characterized by SEM imaging to verify their morphology, and the best was
chosen to be used as a gas sensor.

2.4. Gas Sensor Measurements

The single-nanowire sensor was measured in a home-built system comprising a
measuring chamber with heatable sensor holder and micro-probes, gas flow controllers
connected to high-purity gas bottles, and a multimeter (Keithely 2410, Keithely, Cleveland,
Ohio, USA) connected to a data acquisition program (LabView, National Instruments).
The device was first thermally conditioned for 4 h at 500 ◦C in nitrogen while powered at
1V to stabilize the nanostructures and their base resistance. This is to ensure that the electri-
cal properties of the nanostructures do not change during subsequent measurements [20].
Then, the electrical contact of the SnO2 nanowire with the titanium/platinum electrodes
was studied by analyzing the I-V curves. Good linear behavior was found, which demon-
strated good ohmic contact. The sensor resistance drops from 4.25 to 1.43 to 0.66 MΩ when
measured at 200, 250, and 300 ◦C.

The sensor was operated under a voltage of 1V, while different temperature values
(200, 250, and 300 ◦C) were set by the heater on the sample holder. Different concentrations
of ammonia (10, 5, 2, 1, and 0.5 parts per million, ppm) were tested while maintaining the
total gas flow of 400 sccm. The sensor response was defined as S = Rair/Rgas, where Rgas
and Rair are the resistance of the sensor with ammonia or in air, respectively. The speed
of the single nanowire sensor is measured using the definition of response and recovery
times: the time necessary to reach 90% of the maximum response and to get down to
90% of the complete recovery, respectively. The limit of detection (LoD) was calculated as
3·noiserms/slope, where noiserms is the standard deviation of the sensor signal and slope is
the derivative of the sensor response as a function of ammonia concentration.

2.5. Mackerel Spoilage Measurements

Several small cubes of mackerel fish weighting 20 g were cut from a fresh fillet using
disposable gloves and autoclaved tools. Each cube is kept in a different glass jar until
the measurement with the gas sensor (some at room temperature = 25 ◦C and some in a
fridge at 4 ◦C). Every two hours, a fish sample was inserted into the sensing chamber to
determine its TVB-N, and immediately afterwards, it was subjected to microbial analysis
in order to compare the two measurements. The total viable count (TVC) was evaluated
using a spread plate method [21] on a plate count agar and agar base (Oxoid CM0463 and
0055, Thermo Fisher Scientific, Waltham, MA, USA). Then, the plates were counted after
an incubation time of 48 h at 30 ◦C.

3. Results and Discussion
3.1. Nanowires Characterization

The SnO2 nanowires composing the white soft layer obtained by CVD were first
investigated by scanning electron microscopy to characterize their morphology. A SEM
image of the spaghetti-like nanowires is shown in Figure 1A.
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Figure 1. (A) SEM image of the SnO2 nanowires forest; (B) TEM image of two nanowires; (C) HR-
TEM image of a nanowire lattice; (D) SEM image of the sensor: a single SnO2 nanowire bridging two
metallic electrodes.

As can be seen, the nanowires are long, smooth, and straight, with an average diameter
of 50 nm. Figure 1B shows a TEM image of two nanowires, confirming their smooth and
straight shape, their single-crystallinity, and their constant diameter. The HR-TEM of a
nanowire in Figure 1C shows inter-planar fringes of 0.269 nm, corresponding to the (101)
crystal planes of tetragonal SnO2 structure. Figure 1D illustrates a single nanowire bridging
two metal electrodes. The gap between the Ti/Pt pads is 8 µm wide, while the diameter of
the nanowire is approximately 48 nm.

The composition and structure of the nanowires were also determined by X-ray
diffraction, as shown in Figure 2.

All the diffraction peaks in the pattern can be readily indexed to the tetragonal phase
of SnO2 with lattice parameters of a = b = 4.742 Å and c = 3.186 Å, which agree well with
the reported values (JCPDS no. 77-0450). No amorphous contributions or impurity peaks
can be observed nor other phases of SnO2, confirming the high purity of the nanowires.

3.2. Ammonia Sensing Performance

In order to check the sensor performance at different working temperatures, the
resistance of the single SnO2 nanowire was dynamically measured at three temperature
values: 200, 250, and 300 ◦C. The plots are shown in Figure 3.

The resistance of the nanowire decreases with increasing temperature (from 4.3 MOhm
at 200 ◦C to 0.7 MOhm at 300 ◦C). Therefore, the power consumed by the sensor is always
of the order of µW: 0.23 µW at 200 ◦C and 1.43 µW at 300 ◦C.

At any working temperature, the resistance of the nanosensor is constant in the air
and decreases sharply when ammonia gas is injected into the system. The resistance
returns to its previous value when the ammonia flow is stopped and air is returned to the
system. This behavior can be easily explained, as SnO2 is an n-type semiconductor, and it
is very reactive to its surroundings [22], mainly to reducing gases such as ammonia [23].
The sensing mechanism is well known: as soon as the nanowire is exposed to air, oxygen
is adsorbed on its surface in the form of O− and O2−, draining electrons from the NW and
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increasing its resistance. When ammonia molecules are flowed onto the nanowire surface,
they react with the adsorbed oxygen atoms, releasing electrons back to the nanostructure
and decreasing the nanostructure resistance:

2NH3 + 3O−(ads) → N2 + 3H2O + 3e− (1)

It can easily be seen that the intensity of the response decreases with decreasing gas
concentration (ammonia is injected at 10, 5, 2, 1, and 0.5 ppm, in order).
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Figure 3. Left: dynamic resistance at different temperature values, during the injection of different
concentrations of ammonia. Right: magnification of the response to 10 ppm of ammonia at each
working temperature.

The responses were calculated by averaging the values obtained from three measure-
ment runs such as that shown in Figure 3, which were carried out on three different days.
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The values obtained are shown in Figure 4, where the root mean square error (RMSE) is
indicated for each concentration at each temperature.
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Figure 4. Sensor response as a function of ammonia concentration at three working temperatures.

The response values calculated from the three graphs are shown in Figure 4 in order
to be compared. The response is higher when the sensor works at a higher temperature.

Another thing that can be seen in Figure 3 is how both the response and the recovery of
the sensor start very abruptly, but then, the behavior changes according to the temperature
at which the device is working. These parameters have also been calculated (as explained
in Section 2.4.) so that they can be quantitatively compared, and they are shown in Figure 5.
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Figure 5. Response times (left) and recovery times (right) as a function of the ammonia concentration
for three working temperatures.

As can be seen, response times are always lower than 25 s, while recovery times
are lower than 45 s and in general longer than response times in the same conditions.
Both parameters seem to decrease somewhat as the gas concentration increases but without
a marked trend. It is clear that the sensor speed increases as the operating temperature
increases, and the best conditions are achieved at 300 ◦C, with response times around
2 s and response times around 4 s. The limit of detection was calculated applying the
definition given in Section 2.4, and the obtained results are shown in Figure 6.
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Figure 6. Limit of detection of the single-nanowire (NW) sensor to ammonia at three
working temperatures.

The LoD of the single nanowire device is always less than 1 ppm and decreases
with increasing temperature: 170, 120, and 30 ppb at 200, 250, and 300 ◦C, respectively.
This results from a higher response (Figure 4) and a higher signal-to-noise ratio (Figure 3).

In light of the performance obtained by the nanosensor by measuring ammonia, a
working temperature of 300 ◦C was chosen for the subsequent measurements. At this
temperature, all sensor parameters are optimized: higher response, faster response and
recovery, and lower limit of detection.

3.3. Mackerel Fish Spoilage Measurements

The response of the gas sensor and the total viable count are plotted together in
Figure 7. At the beginning, the TVC starts around 3 × 104 cfu/g and grows slowly; then,
it reaches its maximum slope around 18 h, and finally, around 30 h, it seems to stabilize
around 3 × 109 cfu/g.
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The nanosensor response follows a similar behavior, increasing with a smaller slope
and with a less sharp stabilization at the end. It is clear that the sensor response can
be considered a good approximation of the total viable count. The horizontal dotted
line identifies the threshold considered as the end of the shelf life of the fish both in the
literature [5,24] and for institutions [25]. In our case, this limit was reached after 18 h of
storage at room temperature. The correlation between the gas sensor response and the total
viable count is shown in Figure 8.
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As can be seen, the two signals are well correlated (correlation coefficient = 0.992) with
a small error (RMSE = 2.17%). The root mean square error increases at log(TVC) values
higher than 7.5, while below this value, it is much smaller. In particular, it is minimum for
log(TVC) values from 6.4 to 7. Since the standard threshold used to distinguish the end
of shelf life in literature is log(TVC) = 7, the sensor is more accurate than the total RMSE
indicates, and the gas sensor can be calibrated using the total viable count as a reference.

To check how the shelf life of the fish is prolonged by storing it in a domestic refrigera-
tor, spoilage measurements were repeated on samples stored at 4 ◦C, and the results are
shown in Figure 9.
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Comparing the plots in Figure 9 with those in Figure 7, it is clear that the deterioration
of the mackerel is going much more slowly. Both the gas response and TVC increase very
slowly for up to 18 h; then, the slope increases for both signals. The correlation between
the two signals is good also in this case (correlation = 0.991), so that also, in this case, the
gas response can be considered a good approximation of the total viable count. It appears
evident that in this case, the threshold of 107 cfu/g is reached much later, around 48 h of
storage.

To check if the sensor calibration works, mackerel samples stored at both 25 and 4 ◦C
were measured at a random spoilage level. The results obtained are shown in Figure 10.

Figure 10 shows that there is a good correlation between the response obtained from
the single-nanowire sensor and the bacterial population obtained from the TVC. The
Pearson’s correlation coefficient is 0.991, while the root mean square error on the sensor
response is 2.32%. Samples stored at room temperature or in the fridge do not appear to
have different trends. This confirms that the response of the resistive nanosensor is a good
measure of the level of deterioration of the mackerel.
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4. Conclusions

A single SnO2 nanowire was used as resistive gas sensor to assess the spoilage of
mackerel fish. Performance was initially tested by measuring ammonia concentrations
from 0.5 to 10 ppm at three different operating temperatures. At the optimal temperature
(300 ◦C), the sensor responds and recovers quickly (2 and 4 s, respectively) with a limit
of detection of 30 ppb. Then, the nanosensor was used to monitor mackerel deterioration
over time. The response of the sensor follows well the concentration of the microorganisms
while the fish deteriorates, with a correlation of 0.992. The sensor was tested with double-
blind measurements of samples stored at 25 ◦C and 4 ◦C, and it was able to assess the
mackerel quality in all cases.
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