
����������
�������

Citation: Franceschi, S.; Di Biase,

R.M.; Marcelli, A.; Fattorini, L. Some

Empirical Results on Nearest-

Neighbour Pseudo-populations for

Resampling from Spatial Populations.

Stats 2022, 5, 385–400. https://

doi.org/10.3390/stats5020022

Academic Editor: Wei Zhu

Received: 20 March 2022

Accepted: 12 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Some Empirical Results on Nearest-Neighbour
Pseudo-populations for Resampling from Spatial Populations
Sara Franceschi 1,* , Rosa Maria Di Biase 2 , Agnese Marcelli 3,4 and Lorenzo Fattorini 1

1 Department of Economic and Statistics, University of Siena, 53100 Siena, Italy; lorenzo.fattorini@unisi.it
2 Department of Sociology and Social Research, University of Milano Bicocca, 20126 Milan, Italy;

rosamaria.dibiase@unimib.it
3 Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia,

01100 Viterbo, Italy; agnese.marcelli@student.unisi.it
4 Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Research and

Innovation Centre, 38098 San Michele all’Adige, Italy
* Correspondence: sara.franceschi@unisi.it

Abstract: In finite populations, pseudo-population bootstrap is the sole method preserving the spirit
of the original bootstrap performed from iid observations. In spatial sampling, theoretical results
about the convergence of bootstrap distributions to the actual distributions of estimators are lacking,
owing to the failure of spatially balanced sampling designs to converge to the maximum entropy
design. In addition, the issue of creating pseudo-populations able to mimic the characteristics of real
populations is challenging in spatial frameworks where spatial trends, relationships, and similarities
among neighbouring locations are invariably present. In this paper, we propose the use of the
nearest-neighbour interpolation of spatial populations for constructing pseudo-populations that
converge to real populations under mild conditions. The effectiveness of these proposals with respect
to traditional pseudo-populations is empirically checked by a simulation study.

Keywords: spatial surveys; Horvitz–Thompson estimator; spatially balance sampling; nonmeasurable
designs; pseudo-population bootstrap; nearest-neighbour criterion; simulation study

1. Introduction

The original bootstrap method [1] is not directly applicable without replacement
sampling from finite populations because the values of the survey variable Y in the samples
are not iid. Ref. [2] provides an extended survey of the bootstrap methods for finite
populations, classifying them into three main groups: (i) the pseudo-population bootstrap
(PPB) methods, where a pseudo-population (PP) that mimics the true one is first created
from the sample and bootstrap samples are then selected from the resulting PP by a
resampling design; (ii) direct bootstrap methods, where bootstrap samples are selected
from the original sample or a rescaled version of it using a replacement sampling different
from the original sampling design; (iii) bootstrap weights methods, where instead of
creating bootstrap samples, the sample remains fixed and bootstrap weights are generated
instead. In our opinion, the PPB techniques that adopt as resampling scheme the same
scheme used to select the original sample are the most convincing (see also [3]). Even if PBB
techniques may be computationally intensive with large samples, so that official statistical
offices usually adopt weighted bootstraps [2], PBB techniques preserve the original spirit
of the classical bootstrap [1] where samples are iid data from an unknown distribution and
bootstrap samples, like the original ones, are iid data from the empirical distribution.

At least to our knowledge (but see also [2]), for many years the literature on PPB
only dealt with the properties of bootstrap variance estimators, neglecting asymptotic
considerations involving the whole bootstrap distribution. This is in contrast to the original
spirit by [4] that point out the asymptotic coincidence of the distribution of the bootstrapped

Stats 2022, 5, 385–400. https://doi.org/10.3390/stats5020022 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5020022
https://doi.org/10.3390/stats5020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0001-6675-4540
https://orcid.org/0000-0002-8038-9217
https://orcid.org/0000-0003-1546-9410
https://doi.org/10.3390/stats5020022
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5020022?type=check_update&version=3


Stats 2022, 5 386

estimator with the actual one is an essential requirement (see also [5], chapter 3). To meet
this requirement, Ref. [3] assume a superpopulation model generating an infinite sequence
of Y values with a vector of design variables associated to each of them. Conditional to the
realised sequence, a sequence of finite populations of increasing size is constructed and
sampled by a sequence of designs with inclusion probabilities proportional to a function of
the design variables. As the population size increases, the sequence of designs is requested
to converge to the rejective sampling design of maximum entropy (e.g., [6]), usually referred
to as conditional Poisson sampling (CPS). In this scenario, the authors consider population
parameters that are Hadamard differentiable functionals of the population distribution
function and plug-in estimators of these parameters achieved by substituting the Hajék
estimator of the distribution function into the functional, then proving a functional central
limit theorem for these estimators. As discussed in the next section, various forms of central
limit theorem have a long-standing in finite population sampling. What is really novel
in [3] is that the authors give conditions on PPs, ensuring that the bootstrap distributions of
the plug-in estimators resampled from these PPs by means of suitable resampling schemes
(including that adopted to select the original sample) asymptotically coincide with the
actual distributions of these estimators. At least to our knowledge, the paper by [3] is the
sole one providing a unified framework that theoretically justifies the use of PPB in a wide
range of situations, including the most common sampling schemes and a large collection of
parameters (e.g., totals, averages, quantiles, Lorenz curves, inequality indexes, etc.).

Unfortunately, results by [3] cannot be exploited in spatial surveys, where populations
to be sampled are collections of units located onto a study region with a Y value attached to
each location. The crucial issue is that the most effective designs usually adopted in spatial
sampling are aimed at achieving spatial balance, i.e., samples of units evenly spread over
the study region (e.g., [7]). To this purpose, locations play the role of design variables, and
spatial balance is usually obtained by schemes that avoid the selection of contiguous units.
As a consequence, spatial designs give rise to a large portion of samples (those including
neighbourhoods) that cannot be selected. Therefore, spatial designs do not generally
converge to CPS as requested by [3]. That is exemplified in the Appendix A, where it is
proven that two sampling schemes that in different ways exclude the selection of contiguous
or neighbouring units, fail to converge to CPS. In addition, the issue of creating PPs able
to mimic the characteristics of the real populations is challenging in spatial framework
where spatial trends, relationships, and similarities among neighbouring locations are
invariably present.

Based on these considerations, in this paper we propose the use of PPs suitable to
work in spatial surveys. For some aspects, the proposed PPs are similar to the hot-deck PPs
by [3] in which, given the set of sampled units, the Y value assigned at any other location is
the value of the sample unit that is nearest in the space of the values of a size variable X. In
an analogous way, but involving locations, we here propose to assign at any unsampled
unit the value observed at the sampled unit that is nearest in the geographical space.

Owing to its simplicity, the principle here proposed for constructing spatial PPs con-
stitutes a widely extended practice for mapping spatial populations, and it is commonly
referred to as the nearest-neighbour interpolator (NNI). In the past, NNI has been invariably
adopted as a descriptive technique. In a model-dependent perspective, Ref. [8] (Section 5.9)
classified NNI among “non stochastic methods of spatial prediction”, i.e., descriptive map-
ping techniques for which no stochastic model is assumed and no inference is attempted.
Recently, Ref. [9] approached NNI from a design-based point of view, proving its design-
based consistency under mild assumptions about Y values. Under these conditions, for
populations and sample sizes sufficiently large, the resulting PPs are likely to be good
pictures of the true spatial populations.

The main purposes of this paper are essentially two: (i) to propose the use of PPs based
on NNI that are able to converge to the true populations under mild conditions required for
the Y values and for the spatial sampling schemes, so that one can expect intuitively that
the bootstrap distribution of an estimator should converge to the actual distribution; (ii) to
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empirically evidence by means of a simulation study the superiority of the PPs based on the
NNI in fitting the true populations with respect to PPs commonly used in the literature and
the subsequent superiority in the convergence of the bootstrap distributions toward the
actual distributions of the involved estimators. The paper is organised as follows: Section 2
is devoted to the problem of estimating totals and averages in spatial surveys pointing out
the reasons and the opportunity of adopting PPB for performing a reliable design-based
inference on the distributions of the Horvitz–Thompson (HT) estimators. In Section 3,
some criteria to construct PPs suitable to work with spatial populations are considered,
including the NNI criterion. In Section 4, the PPs considered in Section 3 are compared by a
simulation study in terms of the performance of the bootstrap distributions to fit the actual
distribution of the HT estimators of totals under two schemes usually adopted in spatial
sampling, as well as in terms of the coverage of bootstrap confidence intervals. Concluding
remarks are provided in Section 5.

2. Statement of the Problem

Design-based inference has been widely adopted for estimating totals and averages
of finite spatial populations, especially in agricultural, forest, and environmental studies.
Examples include estimation of totals of agricultural productions for an area frame of
agricultural holdings [10], estimation of total or average of volumes for a population of
trees settled in a forest stand [11], estimation of the total timber volume for a population
of forest compartments in an administrative district [12], and estimation of the average of
eutrophication indexes in the population of small lakes of United States [13]. In these cases,
estimation is customarily performed via the HT criterion or suitable model-assisted modifi-
cations able to exploit auxiliary information, such as generalised regression estimators or
ratio estimators that are, however, functions of HT estimators (e.g., [14], chapter 6).

With this goal in mind, consider a study regionAwhich is supposed to be a connected
and compact set of R2. As it is customary in the finite population asymptotic framework
(e.g., [15]), in spatial surveys we suppose V = {p1, p2, . . . } to be an infinite sequence of
locations onto A and y(V) = {y1, y2, . . . } to be the corresponding sequence of Y values,
where for brevity yj = y(pj). Moreover, let x(V) = {x1, x2, . . . } be the corresponding
sequence of a strictly positive size variable X, where for brevity xj = x(pj).

By a little abuse of notation, we denote locations by their labels. A sequence {Uk} of
spatial populations is considered, where U1 consists of the first N1 locations from V , U2
consists of the first N2 > N1 locations from V , and so on, in such a way that {Uk} turns
out to be a sequence of nested populations of increasing sizes within A. Finally, suppose a
sequence of spatial designs {Pk} to select spatially balanced samples Sk from Uk of fixed
and increasing size nk = pNk for a fixed sampling fraction 0 < p < 1. For each k and for
each location j ∈ Uk, denote by πj(k) the first-order inclusion probability induced by the
kth design Pk that is taken proportional to the size variable X. The key motivation for this
choice is the efficiency of the HT estimator of population totals and averages when there is
a strong direct relationship between X and Y. For simplicity we assume

πj(k) =
nkxj

∑l∈Uk
xl

, j ∈ Uk (1)

Note, however, that equal probability designs are included in (1) when the size variable
X is invariably equal to one. For each k and for each pair of locations j, h ∈ Uk, denote
by πj,h(k) the second-order inclusion probability induced by the kth design. As pointed
out in the introduction, for most spatial schemes these probabilities vanish for pairs of
neighbouring locations for the purpose of achieving spatially balanced samples.

Spatially balanced schemes have a long standing in spatial sampling. Examples
are the generalised random-tessellation stratified sampling (GRTSS) by [13], the spatially
correlated Poisson sampling (SCPS) by [16], the local pivotal method (LPM) by [11], and
the doubly balanced spatial sampling (DBSS) by [17] that not only ensures spatial balance
but also ensures balance with respect to a set of auxiliary variables besides those adopted
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to determine the inclusion probabilities. More recently, additional schemes were proposed
such as the spatial determinantal sampling designs by [18] (see also [19]), the weakly
associated vector sampling by [20], and the tessellation pivotal method by [21].

By using spatial schemes that spread samples, the selection of neighbouring units is
avoided, which means that a large portion of second-order inclusion probabilities is null.
As these sampling designs are nonmeasurable, it is impossible to estimate the variance of
the HT estimator of total without bias. As stated by [16], variance estimation is “a bit tricky”
in spatial sampling.

In addition, once a variance estimate is achieved, the traditional construction of
confidence intervals using the standard normal quantiles would require the existence of a
finite-population central limit theorem. Convergence to normality has been usually derived
for large entropy designs (e.g., [22] and references therein) and more recently extended
to Adamard differentiable functionals of the distribution function, in turn estimated by
HT and/or Hajék criteria, by [23] and by [3], but once again under designs approaching
CPS. More general results are obtained by [24] for a quite large class of designs including
high-entropy designs as special case, but at the cost of working in a superpopulation setup.
A central limit theorem for negatively associated designs is given by [25], but at the cost
of requiring that the variance of the HT estimator converges to the variance of Poisson
sampling such that, as evidenced by [21], it is a quite difficult requirement for fixed-size
designs. The problem has been even solved by the two authors that provide a suitable
variance estimator and prove convergence to normality of the HT estimator, but only for
the case of tessellation pivotal sampling as well as by [18] that prove a central limit theorem
for determinantal sampling.

However, from a wide point of view, as stated in the introduction and argued in the
Appendix A, the exclusion of neighbouring units in the samples decreases the entropy of
spatial designs that do not generally converge to large entropy designs as the population
and sample sizes increase, thus generally precluding the use of finite-population central
limit theorems available in the literature. Therefore, in spatial surveys, the use of PPB may
be a suitable solution for making inferences on the distribution of the HT estimator and for
constructing confidence intervals.

3. Spatial Pseudo-populations

The effectiveness of any PPB rests on the capacity of constructing PPs able to well
depict the real population from which the sample has been selected. However, as stated
in the introduction, some PPs commonly adopted in PPB are not suitable to mimic spatial
populations. First of all, PPs such as the Holmberg PP [26] or the double-calibrated PP [3]
that provide random population sizes must be avoided. Indeed, if the resulting PP size is
smaller than the size of the real population, we have to arbitrarily discard a set of locations
without any insight about how to choose them; on the other hand, if the resulting size is
greater, we have to arbitrarily add locations, also in this case without any insight on the
way in which the new units should be located on A. Moreover, PPs in which the Y values
of the sampled units are assigned to an established number of units in the populations,
such as the conditional Poisson PP [3], should be avoided because we have to arbitrarily
assign such values to units without any insight about the locations at which these values
should be assigned.

The multinomial PP (MPP) by [27] is one among the “traditional” PPs that can also be
applied in spatial sampling. For each location j ∈ Uk, MPP independently assigns to j the
values ŷj = yh and x̂j= xh with probability

Pr
{

ŷj = yh
}
=

x−1
h

∑l∈Sk
x−1

l

, h ∈ Sk

The resulting PP has obviously the same size Nk of the real population. Even if
virtually applicable in spatial surveys, MPP takes into consideration only the information
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provided by the size variable X, completely neglecting the spatial locations, while in most
cases the Y values strictly depend on locations. As such, MPP is likely to provide poor
representations of real populations.

The hot-deck PP (HDPP) is another PP that can be applied in spatial surveys. HDPP
has been proposed by [3] based on the idea that the values of the size variable are good
proxies for the Y values. Then, for each location j ∈ Uk, HDPP assigns to j the values
x̂j = xj and

ŷj = Zk,jyj +
(

1− Zk,j

)
ynnx(j) (2)

where Zk,j is the sample indicator variable that is equal to 1 if j ∈ Sk, and it is equal to
0 otherwise and nnx(j) = argminh∈Sk

∣∣xj − xh
∣∣ , i.e., HDPP predicts the Y value at any

unsampled location j by the Y value of the sampled location that is nearest to j in the space
of the X values. Practically speaking, prediction (2) constitutes a NNI in the X space. Even
if HDPPs do not directly consider the information provided by locations, locations enter in
the predictions by the fact that any xj = x(pj) is actually a function of its location.

Alternatively, we here propose the use of NNI in which predictions are completely
based on the spatial coordinates. NNI exploits the well-known Tobler’s first law of geogra-
phy, for which the Y values at locations that are close in space tend to be more similar than
those at locations that are far apart [28]. Therefore, for each location j ∈ Uk, this criterion,
henceforth referred to as NNPP, assigns to j the values x̂j = xj and

ŷj = Zk,jyj +
(

1− Zk,j

)
ynng(j) (3)

where in this case nng(j) = argminh∈Sk

∣∣∣pj − ph

∣∣∣ , i.e., we predict the Y value at any unsam-
pled location j by the Y value of the sampled location that is nearest to j in the geographical
space. Practically speaking, NNPP assigns the value of a sampled unit to each unsampled
unit inside the Voronoi cell constructed around the sampled unit.

Ref. [9] approach the NNI (3) from a design-based perspective. Based on the sole
assumption that the function y, defined on V is measurable and bounded by L, they derive
the following inequality for any location j ∈ Uk and any δ > 0 (see Theorem 1 in [9])

Ek
{∣∣ŷj − yj

∣∣} ≤ ∆k

(
pj, δ

)
+ LPr

 ⋂
h∈Sk

(∣∣∣pj − ph

∣∣∣ > δ
) (4)

where Bk

(
pj, δ

)
=
{

h : h ∈ Uk,
∣∣∣pj − ph

∣∣∣ ≤ δ
}

is the set of locations in Uk within the δ-ball

around pj, ∆k

(
pj, δ

)
= sup

h∈Bk

(
pj ,δ

)∣∣yj − yh
∣∣ is the largest difference from yj within the

δ-ball around pj, the intersection event in the second term of (4) is the event that no sample
location is within the δ-ball around pj, and Ek denotes expectation with respect to the k-th
design Pk. Inequality (4) establishes that the design-based expectations of the absolute
NNI errors are bounded by the sum of two terms: the first depending on the roughness
of Y values around pj and the second depending on the sampling design. Therefore,
consistency of NNI holds if both terms approach 0 as k→ ∞. If y is continuous at pj then
the first terms approach 0 as δ→ 0 in such a way that consistency depends on the ability
of the sampling schemes to select locations around pj. Practically speaking, the sampling
scheme adopted should be able to asymptotically provide spatial balance, i.e., to evenly
spread sampled locations in such a way that, as k increases, each location of Uk is likely to
have neighbouring locations sampled. It is worth noting that this consistency condition is
satisfied by elementary schemes such as simple random sampling without replacement
(SRSWOR) and stratified spatial sampling with proportional allocation. Unfortunately,
owing to their complexity, we cannot prove that the common spatial schemes mentioned in
Section 2 satisfy this requirement. However, stated the effectiveness of these schemes in
providing spatial balance and their empirical performance invariably superior to that of
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SRSWOR (e.g., [29]), consistency of NNI should also hold with these schemes. Owing to
consistency, for population and sample sizes sufficiently large, NNPPs are likely to provide
a precise representation of the real spatial population. It is also worth noting that as any
model, Tobler’s law may be wrong. That is not frequent, but may appear in nature when
competitions for resources occurs (e.g., light/water availability for trees). However, the
great appeal of design-based NNI is that, even when Tobler’s law is not suitable, consistency
of NNI is ensured by the continuity of y joined with the use of sampling schemes able to
provide an asymptotic spatial balance.

On the other hand, it should be pointed out that consistency cannot be proven for
the HDPPs in which the nearest locations are identified in the X space. Indeed, it is very
natural to think the Y values linked with the X values by a deterministic function t plus a
term e that depends on pj and quantifies the error achieved by deterministically predicting
yj by xj. In practice, a very general scenario for the Y values is

yj = t(xj) + ej , j ∈ Uk (5)

It is worth noting that (5) is not an assumption but just a reckoning relationship that
invariably holds once we choose a deterministic function t suitable to link Y with X. Owing
to (5), it is apparent that the first term of (4) cannot approach 0 even if δ approaches 0.
In practice, even if the distances in the X space become smaller and smaller, i.e., if xh
approaches xj, then t(xh) may approach t(xj), nothing ensures that yh approaches yj, owing
to the presence of the spatial component that is not accounted for. These considerations
evidence the theoretical appeal of NNPPs over HDPPs.

Finally, a relevant difference between the MPPs with respect to HDPPs and NNPPs is
that the last two only depend on the selected sample Sk, in such a way that once the sample
is selected there is only one PP from which bootstrap samples are selected (conditional
approach). On the other hand, MPPs depend on the sample Sk as well as on the random
assignment of the sample values to the population. In this case, we can construct a PP
at any resampling occasion from which a bootstrap sample is selected (unconditional
approach). Obviously, the unconditional approach is more computationally intensive and
time consuming [3]. For this reason, as well as for performing a fair comparison of the PP
criteria, only the conditional approach is considered.

4. Simulation Study

The purpose of this study is to empirically evaluate the performance of the different
criteria for constructing PPs from which resampling is performed to approximate the
distribution of the HT estimators of totals in spatial sampling. Comparison is performed
with respect to several spatial populations showing different spatial patterns, several
spatially balanced sampling schemes, and several population sizes whose increase mimics
the sequence of nested populations theoretically supposed throughout the paper.

4.1. Artificial Populations

To generate finite and nested spatial populations, an artificial surface on the unit
square was considered, where for any point p = [p1, p2] the surface was defined by

y(p) = Csin(3p1)sin2(3p2) (6)

where the constant C= 10/sin31.5 ensured a maximum Y value of 10 (see Figure 1). The
surface (6) was chosen to represent the major characteristics of spatial populations. It was
continuous, in such a way that the Y values in neighbouring locations tended to be similar,
thus entailing a positive spatial autocorrelation in the resulting populations. Moreover,
it varied relevantly throughout the unit square showing an increasing trend toward the
centre of the square, thus entailing a spatial stratification with different values of the survey
variable in different parts of the square.
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Figure 1. Map of the artificial surface adopted to generate the finite spatial populations of points.

From (6), three nested populations of N = 250, 500, and 1000 points were located in
the unit square in accordance with four spatial patterns referred to as regular (RE), random
(RA), trended (TR), and clustered (CL) patterns.

For RE pattern, the nested populations were constructed generating the first 250 points
completely at random on the unit square but discarding those having distances smaller
than 1/

√
250 to those previously generated, then adding a further 250 points completely at

random on the unit square but discarding those having distances smaller than 1/
√

500 to
those previously generated, and finally adding a further 500 points completely at random,
discarding those having distances smaller than 1/

√
1000. For the RA pattern, the nested

populations were constructed by simply generating 1000 points completely at random in
the unit square and then assigning the first 250 to the first population, the first 500 to the
second population, and all of them to the third.

For the TR pattern, the nested populations were constructed generating 1000 points of
coordinates

[
1− u2

1, 1− u2
2
]
) where u1, u2 were independent random numbers uniformly

distributed on (0, 1). Then, the first 250 points were assigned to the first population, the first
500 to the second population, and all of them to the third. Finally, for the CL pattern, the
nested populations were constructed generating 10 cluster centres completely at random
on the unit square and then assigning 25 points to each cluster generated from a spherical
normal distribution centred on the cluster centre with variances 0.025, then adding a further
25 points to each cluster from the same normal distribution and finally adding a further
50 points to each cluster from the same distribution. Points falling outside the unit square
were discarded and newly generated. For each spatial pattern, Figure 2 shows the resulting
populations of maximum size 1000.
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Figure 2. Maps of the largest spatial populations of 1000 points adopted in the simulation.

For each pattern, the Y values were given by (6) at the generated points, while the X
values where generated from the Y values by

xj = yj + kuj , j = 1, . . . , 1000

where the ujs were independent random variables uniformly distributed on (0, 1) and k is
a multiplicative constant that ensured a correlation of 0.7 between the 1000 values of X and
Y. Population totals Ty obviously changed with spatial patterns and population sizes.

4.2. Sampling, Estimation, and Resampling

For any spatial population arising from the combination of spatial patterns and popula-
tion sizes, R = 10,000 samples of fixed size n = 0.1 N were independently selected by means
of LPM and DBSS with first order inclusion probabilities given by (1). Moreover, the DBSS
is balanced also with respect to the horizontal coordinates (pj,1), the vertical coordinates
(pj,2), and their squared values (p2

j,1, p2
j,2), in such a way that the resulting samples were not

only spread on the unit square, but they had approximately the same barycentre and the
same dispersion of the whole population [17]. LPM and DBSS were performed using the R
functions lpm1 and lcube, respectively, from the BalancedSampling library.

Then, for each sample Si selected at the i-th simulation run (i = 1, . . . , R), the HT
estimate of the population total Ty was computed by means of

T̂i =
Tx

n ∑
j∈Si

yj

xj

where Tx was the total of the size variable in the population. Moreover, from the sample
Si, a PP (ŷi,j, x̂i,j, j = 1, . . . , N) was created in accordance with each of the three criteria
considered in Section 3, i.e., MPP, HDPP, and NNPP. Because NN techniques require
efficient algorithms to perform the many controls necessary for identifying closest units
in both geographical or X spaces, we used the NND.hotdeck function in the R StatMatch
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library for constructing HDPPs and NNPPs. For constructing MPP, we used the basic R
function sample.

Then, the ability of the resulting PP in fitting the real population was determined by
means of the root of the average squared error

RASEi =

{
1
N

N

∑
j=1

(yj − ŷi,j)
2

}1/2

.

From each PP, B = 1000 bootstrap samples

S∗i,1, . . . , S∗i,B

were selected adopting the same sampling scheme adopted to select the original sample Si,
and for each bootstrap sample the HT estimate of the population total was computed by
means of

T̂∗i,b =
T̂i,x

n ∑
j∈Si,b

ŷi,j

x̂i,j
, b = 1, . . . , B

where T̂i,x was the total of the size variable in the i-th PP.
Finally, the bootstrap estimate of the relative standard error of the HT estimator of

total was achieved by means of

R̂SE
∗
i,B =

S∗i,B
T̂i
× 100

where

S2∗
i,B =

1
B− 1

B

∑
b=1

(
T̂∗i,b − T∗i,B

)2

was the bootstrap estimate of variance and

T∗i,B =
1
B

B

∑
b=1

T̂∗i,b

was the bootstrap mean. The bootstrap distribution of the HT estimator of total was
approximated by

F̂∗i,B(t) =
1
B

B

∑
b=1

I(T̂∗i,b ≤ t)

and the 95% bootstrap confidence interval for Ty was given by T̂∗i,B(25)-T̂
∗
i,B(975), where T̂∗i,B(m)

is the m-th order statistic from T̂∗i,1, . . . , T̂∗i,B. The interval length li,B = T̂∗i,B(975) − T̂∗i,B(25) was
also considered.

4.3. Performance Indicators

For each combination of spatial patterns, population sizes, and PP criteria, the Monte
Carlo distributions of the root of average squared error RASE1, . . . , RASER were adopted
to empirically determine the fitting performance of the criteria

FIT =
1
R

R

∑
i=1

RASEi.
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For each combination of spatial patterns and population sizes, the Monte Carlo distri-
butions of the HT estimators of total T̂1, . . . , T̂R were adopted to empirically determine the
actual distribution of the estimator

F(t) =
1
R

R

∑
i=1

I(T̂i ≤ t)

and the relative standard error
RSE =

V
Ty
× 100

where

V2 =
1

R− 1

R

∑
i=1

(T̂i − Ty)
2

was the Monte Carlo variance. Once the distribution and the precision of the HT estimator
were empirically determined, the ability of PPB to mimic the actual distribution of the HT
estimator was determined for each of the four PP criteria by means of their worst-fitting
performance

WFB = max
i=1,...,R

KSi,B

where, for each simulation run i and each PP criteria, the fitting performance of the bootstrap
distribution was quantified by the two-sample Kolmogorov–Simrnov (KS) statistic

KSi,B = sup
t∈R

∣∣∣F(t)− F̂∗i,B(t)
∣∣∣

Moreover, the mimic ability of PPs was quantified by the capacity of the 95% bootstrap
confidence intervals to approach the nominal level of 95% that was determined by means
of their empirical coverage

C95B =
1
R

R

∑
i=1

I
[

T̂∗i,B(25)≤Ty ≤ T̂∗i,B(975)

]
associated with their average length

L95B =
1
R

R

∑
i=1

li,B

Finally, the capacity of the bootstrap distributions to reproduce the actual precision of
the HT estimators was determined comparing the empirical expectations of the bootstrap
relative standard error estimators with the actual relative standard errors. Because the
actual relative standard error and their bootstrap estimates were likely to approach 0 as
population and sample sizes increased, the ratio

RATB =
E(R̂SE

∗
B)

RSE

was adopted, where

E
(

R̂SE
∗
B

)
=

1
R

R

∑
i=1

R̂SE
∗
i,B

4.4. Results

Tables 1 and 2 report the simulation results for the two spatial schemes (LPM and
DBSS) adopted in the simulation. The results empirically confirmed the theoretical and
practical considerations argued in the paper.
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For both schemes and for all the spatial patterns, the RSEs quickly decreased as the
population sizes increased, showing the presumable consistency of the HT estimator of
population totals under these schemes. These findings agreed with [30], which theoretically
proved the consistency of the HT estimation in spatial populations under very simple
schemes such as SRSWOR but without proving the consistency under more complex
spatially balanced schemes such as LPM and DBSS, owing to the lack of analytical ex-
pressions of the second-order inclusion probabilities. However, stated the superiority of
these schemes in providing spatial balance with respect to SRSWOR, they concluded that
“consistency presumably holds also for these schemes”.

Table 1. Values of relative standard errors (RSE) of the Horvitz–Thompson estimator of totals,
pseudo-population fitting indexes (FIT), ratios of expectations of bootstrap RSE estimators to the
actual values (RATB), coverages of the 0.95 bootstrap confidence intervals (C95B) and expectations
(in parentheses) of their lengths (L95B), and the worst of the two-sample Kolmogorov–Smirnov
statistics (WFB). The values are computed from R = 10,000 samples and B = 1000 bootstrap samples
independently selected by means of the local pivotal method (LPM) for each spatial pattern (SP),
each pseudo-population (PP) and each populations size N = 250, 500, and 1000 with a sampling
fraction of 0.1.

SP N RSE PP FIT RATB C95B (L95B) WFB

Regular 250 7.68 MPP 4.02 1.51 90.67 (373.77) 1.00
HDPP 2.80 1.55 92.8 (386.22) 0.99
NNPP 1.39 1.50 99.47 (372.31) 0.82

500 4.96 MPP 4.10 1.64 92.26 (538.57) 1.00
HDPP 2.73 1.65 93.47 (543.8) 0.99
NNPP 0.97 1.33 99.99 (436.74) 0.72

1000 3.45 MPP 4.23 1.66 91.76 (791.25) 1.00
HDPP 2.78 1.67 93.73 (793.61) 1.00
NNPP 0.67 1.18 100 (559.54) 0.56

Random 250 7.82 MPP 3.96 1.48 91.72 (371.86) 1.00
HDPP 2.65 1.64 92.11 (386.42) 1.00
NNPP 1.36 1.54 98.9 (359.55) 0.85

500 5.13 MPP 4.04 1.59 92.33 (527.48) 1.00
HDPP 2.65 1.68 93.5 (543.99) 0.99
NNPP 0.92 1.3 100 (425.09) 0.67

1000 3.58 MPP 3.98 1.65 93.75 (757.8) 1.00
HDPP 2.67 1.69 93.97 (765.29) 0.99
NNPP 0.64 1.20 100 (536.11) 0.54

Cluster 250 6.15 MPP 3.40 1.73 92.04 (348.86) 1.00
HDPP 2.34 1.77 94.53 (353.22) 1.00
NNPP 0.45 1.04 100 (209.73) 0.48

500 4.33 MPP 3.38 1.68 91.40 (479.39) 1.00
HDPP 2.23 1.70 94.25 (476.90) 0.99
NNPP 0.31 1.01 100 (287.67) 0.22

1000 3.01 MPP 3.39 1.73 90.47 (685.49) 1.00
HDPP 2.26 1.73 95.24 (684.41) 0.98
NNPP 0.23 1.02 100 (403.87) 0.17

Trended 250 8.35 MPP 4.12 1.73 91.76 (364.24) 1.00
HDPP 2.45 1.67 92.08 (355.36) 0.99
NNPP 1.30 1.46 98.9 (307.95) 0.85

500 5.71 MPP 3.78 1.83 92.96 (479.22) 1.00
HDPP 2.31 1.74 92.80 (457.10) 1.00
NNPP 0.84 1.25 99.99 (326.84) 0.72

1000 3.85 MPP 3.79 1.91 93.66 (695.12) 1.00
HDPP 2.39 1.85 93.9 (672.29) 1.00
NNPP 0.59 1.17 100 (426.69) 0.53
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Table 2. Values of relative standard errors (RSE) of the Horvitz–Thompson estimator of totals, pseudo-
population fitting indexes (FIT), ratios of expectations of bootstrap RSE estimators to the actual values
(RATB), coverages of the 0.95 bootstrap confidence intervals (C95B) and expectations (in parentheses)
of their lengths (L95B), and the worst of the two-sample Kolmogorov–Smirnov statistics (WFB). The
values are computed from R = 10,000 samples and B = 1000 bootstrap samples independently
selected by means of the doubly balanced spatial sampling (DBSS) for each spatial pattern (SP), each
pseudo-population (PP) and each populations size N = 250, 500, and 1000 with a sampling fraction
of 0.1.

SP N RSE PP FIT RATB C95B (L95B) WFB

Regular 250 5.48 MPP 4.02 2.04 93.15 (362.55) 1.00
HDPP 2.80 2.11 97.36 (374) 0.98
NNPP 1.42 1.77 95.06 (313.69) 0.93

500 3.00 MPP 4.10 2.64 95.19 (524.86) 1.00
HDPP 2.73 2.64 98.05 (526.33) 0.98
NNPP 0.99 1.67 97.32 (332.87) 0.89

1000 1.67 MPP 4.23 3.38 96.33 (779.86) 1.00
HDPP 2.78 3.38 98.45 (775.83) 0.99
NNPP 0.69 1.54 99.17 (351.90) 0.85

Random 250 5.19 MPP 3.96 2.16 94.61 (362.74) 1.00
HDPP 2.64 2.33 96.93 (366.47) 0.99
NNPP 1.40 2.01 94.29 (300.56) 0.97

500 3.02 MPP 4.04 2.63 95.33 (514.21) 1.00
HDPP 2.65 2.74 97.86 (523.63) 0.99
NNPP 0.95 1.68 97.92 (316.92) 0.91

1000 1.7 MPP 3.98 3.42 96.68 (747.25) 1.00
HDPP 2.67 3.46 98.39 (748.44) 1.00
NNPP 0.66 1.66 99.70 (338.19) 0.97

Cluster 250 3.98 MPP 3.40 2.56 93.16 (336.18) 1.00
HDPP 2.33 2.61 97.72 (339.91) 0.99
NNPP 0.50 1.18 97.17 (152.54) 0.94

500 2.10 MPP 3.39 3.34 95.25 (463.40) 1.00
HDPP 2.23 3.39 98.39 (464.74) 0.99
NNPP 0.31 1.08 100 (149.2) 0.46

1000 1.06 MPP 3.39 4.82 95.06 (670.18) 1.00
HDPP 2.26 4.85 99.03 (672.88) 1.00
NNPP 0.23 1.13 100 (157.43) 0.38

Trended 250 6.10 MPP 4.12 2.21 93.36 (341.83) 1.00
HDPP 2.46 2.21 97.29 (343.09) 0.99
NNPP 1.35 1.79 93.52 (276.32) 0.99

500 3.70 MPP 3.77 2.71 96.02 (460.72) 1.00
HDPP 2.31 2.62 97.50 (445.38) 0.99
NNPP 0.87 1.53 99.36 (260.24) 0.93

1000 2.05 MPP 3.79 3.48 96.89 (675.68) 1.00
HDPP 2.39 3.39 98.33 (658.15) 0.99
NNPP 0.61 1.50 99.90 (291.60) 0.79

For both schemes and for all spatial patterns, the fitting performance (FIT) of the
NNPPs quickly improved as the population sizes increased, showing, also in this case, the
presumable consistency of the NNI under these spatial schemes, as argued in Section 3
but not theoretically proven, once again owing to the complexity of the schemes and the
lack of analytical expressions of second-order inclusion probabilities. As also theoretically
argued in Section 3, consistency did not hold for the HDPPs. Indeed, as the population
sizes increased, FIT indexes remain quite the same, or even increased or weakly decreased.
The fitting performance was even worse for MPPs with FIT values that were about two
times those achieved by HDPPs.

The fitting performance of PPs heavily impacted the ability of PPB distributions to fit
the actual distributions of HT estimators. RAT values achieved under NNPPs are always
greater than 1 but invariably smaller than those achieved under HDPPs and MPPs and
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quickly approach 1 as population sizes decrease, showing a tendency to be moderately
conservative. On the other hand, RAT values achieved by HDPPs and MPPs showed a
tendency to a large overestimation that unsuitability masked the actual precision of the
two spatial strategies and that did not decrease, but sometimes even increased, as the
population sizes increased.

The superiority of NNPPs was also demonstrated by the performance of bootstrap
confidence intervals that for all the PP criteria showed coverages similar to or greater than
the nominal level but with average lengths that in the case of NNPPs are much smaller, in
some cases even two–three times smaller than those achieved by HDPPs and MPPs.

The same conclusion held for maximum values of the two-sample Kolmogorov–
Smirnov statistic, as the WF values achieved under NNPPs were invariably smaller than
those achieved under HDPPs and MPPs, and they quickly decreased as the population
sizes increased while those achieved under HDPPs and MPPs remained quite stable.

Finally, in comparative terms, DBSS invariably outperformed LPM for all the perfor-
mance criteria adopted in the study. That was a quite obvious result, as DBSS exploited the
information provided by the spatial coordinates in addition to information provided by the
size variable that was the sole exploited by LPM.

5. Final Remarks

Spatial surveys, and especially agricultural, forest, and environmental surveys, are usu-
ally aimed at estimating aggregate resources of ecological importance (e.g., crop, biomass,
abundance, extent, and species richness) with quantifiable precision, in accordance with the
purposes of the so-called descriptive inference without accomplishing the purpose of the
so-called analytic inference, i.e., reconstructing—and hence explaining—the spatial process
generating these aggregates [31]. Probably for this reason, spatial surveys have been tradition-
ally approached from a design-based perspective, bypassing the complex task of modelling
spatial phenomena, viewing these phenomena as fixed, and attributing uncertainty only to
sampling (e.g., [32,33]). In this scenario, national forest inventories constitute the most promi-
nent examples, as design-based inference has been adopted in Scandinavian countries from
the beginning of the past century to estimate forest attributes at the country level (e.g., [34]). In
the last years, even the mapping of ecological resources, traditionally approached in the realm
of the model-based geostatistical procedures (e.g., [8]), has been approached in a design-based
perspective by [9] that derives the design-based properties of the NNI.

Because in a design-based framework properties of any estimator are completely deter-
mined by the sampling design, the design choice is then crucial in this context. Regarding the
sampling schemes usually adopted in spatial surveys, in this paper we have emphasised the im-
portance of spatial balance, i.e., the capacity of the sampling schemes to evenly spread locations
over the study region in such a way that no portion of the region is over- or under-represented.
At the same time, we have also outlined the drawbacks involved by the use of spatially balanced
schemes, i.e., (a) the lack of convergence of these schemes to CPS that precludes the exploitation
of finite population central limit theorems, and (b) the presence of some second-order inclusion
probabilities equal to 0 that preclude the unbiased estimation of variance.

Because the use of PPB seems to be a viable solution to overcome both the issues, the
focus of the paper has switched to the choice of PPs capable of providing good representations
of the spatial populations from which balanced samples are selected. At this step, the results
by [9] have been crucial. The authors proved the design-based consistency of the NNI under
mild conditions regarding the spatial populations and the sampling schemes. Conditions
about populations simply require the smoothness of the Y values in neighbouring locations
that well approach the theoretical condition of local continuity, while conditions on the
sampling scheme simply require an asymptotical spatial balance that is satisfied even by
SRSWOR. Therefore, when using spatial schemes explicitly tailored for achieving spatial
balance, the consistency of NNI should hold a fortiori. For these reasons, the NNI of real
populations has been proposed as a criterion for constructing PPs in spatial surveys, referred
to as NNPPs. The obvious intuition behind this proposal is that if the NNPPs converge to
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the true populations, bootstrap distributions arising from these maps should converge to the
actual distributions of the estimators. In practice, the consistency of NNPP causes one to
think that, as the population and sample size increase, a convergence similar to that proven
by [3] should occur, i.e., the PPB distributions should converge to the actual distribution
at the cost of requiring an asymptotical spatial balance of the design adopted to select the
original and bootstrap samples, instead of requiring the convergence to CPS. The theoretical
proof of this conjecture, which has been empirically confirmed by the simulation study of
section 4, is one target of our future work.

On the other hand, the achievement of a central limit theorem universally valid for
low-entropy spatially balanced schemes seems to be too wide an objective. Probably, the
solution would be to prove central limit theorems for single designs as recently done by [18]
for the determinantal sampling designs and by [21] for the tessellation pivotal method.
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Appendix A

Let UN be a spatial population of N > 2 units and Sn be the family of the
(

N
n

)
possible samples of size n that can be selected from UN . Denote by PSRS the probability

measure induced by SRSWOR onto Sn, in such a way that PSRS(S) =
(

N
n

)−1

for each

S ∈ Sn.
Now, consider a successive scheme that performs n sequential drawings by excluding

at each drawing the nearest neighbour of the previously selected units [35]. Obviously,
in this case, the family of possible samples reduces to Sn(0) ⊂ Sn. If n < N/2, from
straightforward combinatorial considerations it follows that

card
(
Sn(0)

)
=

N(N − 2) . . . [N − 2(n− 1)]
n!

in such a way that PSRS(0)(S) = 1/card
(
Sn(0)

)
for each sample S ∈ Sn(0), where PSRS(0)

denotes the probability measure induced by the rejective scheme onto Sn(0).
Accordingly, the Hellinger distance between the two designs is given by

dH

(
PSRS, PSRS(0)

)
= ∑

S∈Sn

[√
PSRS(S)−

√
PSRS(0)(S)

]2

= 2

[
1− ∑

S∈Sn(0)

√
PSRS(S)PSRS(0)(S)

]

= 2

1− ∑
S∈Sn(0)

1√√√√( N
n

)
card( Sn(0))

 = 2

1−
√√√√√ card( Sn(0))(

N
n

)


= 2
[

1−
√

N(N−2)...[N−2(n−1)]
N(N−1)...[N−(n−1)]

]
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Because

N(N − 2) . . . [N − 2(n− 1)]
N(N − 1) . . . [N − (n− 1)]

≤ N − 2(n− 1)
N − (n− 1)

=
N(1− 2p) + 2
N(1− p) + 1

it follows that

dH

(
PSRS, PSRS(0)

)
≥ 2

[
1−

√
N(1− 2p) + 2
N(1− p) + 1

]
≥ 1− N(1− 2p) + 2

N(1− p) + 1
=

Np− 1
N(1− p) + 1

where p = n/N denotes the sampling fraction.
Therefore,

lim
N→∞

dH

(
PSRS, PSRS(0)

)
≥ lim

N→∞

Np− 1
N(1− p) + 1

=
p

1− p

i.e., as the population size increases, the sequence of designs PSRS(0) selecting a constant
fraction p of units cannot converge to SRSWOR for any 0 < p < 1/2. Therefore, because
SRSWOR converges to CPS, for the triangular property of distances it follows that PSRS(0)
does not converge to a CPS with equal first-order inclusion probability.

Similarly, consider the one-per-stratum sampling (OPSS) scheme in which, supposing
N be a multiple of n, the population UN is stratified into n clusters of neighbouring N/n
locations and a location is randomly selected within each cluster [36]. In this case, the
family of possible samples Sn(0) ⊂ Sn reduces to the samples of size n with a unique

location per cluster. Therefore card
(
Sn(0)

)
= (N/n)n and POPSS(S) = 1/card

(
Sn(0)

)
for each sample S ∈ Sn(0), where POPSS denotes the probability measure induced by OPSS
onto Sn(0). Accordingly, the Hellinger distance between the two designs is given by

dH(PSRS, POPSS) = 2

1−

√√√√√√ card
(
Sn(0)

)
(

N
n

)
 = 2

1−

√(
N
n

)n( N
n

)−1


For N and n sufficiently large, owing to the Stirling formula(
N
n

)n( N
n

)−1

∼
√

2πn(N − n)
N

(
N − n

N

)n
=
√

2πp(1− p)
√

N(1− p)N(1−p)

from which it follows that

lim
N→∞

card
(
Sn(0)

)
(

N
n

) ∼
√

2πp(1− p) lim
N→∞

√
N(1− p)N(1−p) = 0

in such a way that
lim

N→∞
dH

(
PSRS, PSRS(0)

)
∼ 2

i.e., as the population size increases, the sequence of OPSS designs selecting a constant
fraction p of units cannot converge to SRSWOR for any 0 < p < 1. Therefore, because
SRSWOR converges to CPS, for the triangular property of distances it follows that POPSS
does not converge to CPS with equal first-order inclusion probability.
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