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Abstract

This article presents a discussion of principal components analysis of descriptive sensory

data. Focus is on standardization, many correlated variables, validation, and the use of

descriptive data in preference mapping. Different ways of performing the analysis are pres-

ented and discussed with focus on how to obtain informative and reliable results. The results

will be commented on in light of experience. All methods will be illustrated by calculations

based on real data. The article ends with a list of suggestions for all the topics covered.

Practical Application

The article is about using principal components analysis (PCA) in sensory science.

The applicability of the methods and ideas presented in this article are relevant for all

types of descriptive sensory data. The ideas are general and comprise areas such as

standardization, validation, and many correlated variables. The target group of

readers for the article is the sensory scientist who uses PCA on a daily basis and who

may have questions regarding how to use the method the best possible way.

1 | INTRODUCTION

When analyzing data from quantitative descriptive analysis (QDA, see

for example, Stone, Bleibaum, & Thomas, 2021), a number of choices are

made more or less consciously based on tradition or habits. Some of

these choices, however, can have an impact on the solution, and for

proper interpretation of results it is important to be aware of their conse-

quences. Special emphasis here will be on the use and interpretation of

results from principal components analysis (PCA). Five selected aspects

are described briefly below and will be discussed in more detail later in

the article using examples with real data. We emphasize that, this is not

an exhaustive list covering all possible aspects of PCA.

1.1 | Aspect 1: using all individual data or
aggregated data

For sensory panels, data contain one intensity score value for each

assessor, sample, attribute, and replicate. These can be analyzed either

simultaneously in this initial form, or one can average across assessors

and replicates, which is often done in practice. This results in a data

matrix with samples as rows and attributes as columns. In this article,

we will discuss pros and cons of the two approaches and point at dif-

ferent analysis methods that are suitable in the two cases.

1.2 | Aspect 2: standardization

An important first choice that has to be made when using PCA is

whether the variables should be used as they are in their original units

or to weight/standardize them in some way. Centring of variables is

always done in PCA since interpretation for interval scale data is

always easier with a basis at the data center than in the origin. But

how to weigh the relative influence of variables is less obvious.

A common way of making variables comparable is to standardize

them to the same variance (obtained by dividing the observations for

each variable by its standard deviation), but in many applications this

Received: 21 October 2020 Revised: 22 January 2021 Accepted: 15 June 2021

DOI: 10.1111/joss.12692

 Journal of
 Sensory Studies

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Journal of Sensory Studies published by Wiley Periodicals LLC.

J Sens Stud. 2021;36:e12692. wileyonlinelibrary.com/journal/joss 1 of 18

https://doi.org/10.1111/joss.12692

https://orcid.org/0000-0001-5610-3955
https://orcid.org/0000-0003-2473-8678
mailto:tormod.naes@nofima.no
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/joss
https://doi.org/10.1111/joss.12692
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjoss.12692&domain=pdf&date_stamp=2021-06-29


is not done. It is important to stress that standardization is not primarily a

statistical and technical issue, but goes to the core of how to interpret the

sensory attributes and to how the assessors are trained and calibrated. In

other words, the variability of a sensory attribute is a consequence not

only of the difference of the products but also of how the panel is cali-

brated. If the panel training is properly done, the first two principal compo-

nents used for visualization—with or without standardization—will,

however, usually coincide quite well if nonsignificant variables are elimi-

nated. In some cases other types of standardization than the standard

deviation scaling, like for instance, Pareto scaling (Eriksson, Johansson,

Kettaneh-Wold, &Wold, 1999) may be appropriate.

1.3 | Aspect 3: many highly correlated variables

Another choice that has to be made when using PCA is which variables

to incorporate into the analysis. Should one use all variables or only a

subset reflecting the most important dimensions? If for instance the

same phenomenon is described by several variables, the PCA plots may

give a biased impression of the relative importance of the underlying

sensory dimensions. Obvious examples of this are variables describing

the odor and flavor of the same phenomenon and contrasting attributes

such as dark/light and soft/hard, but other less obvious examples

related to the cognitive or sensing process may also be envisioned. In

this article, we will discuss this phenomenon in some detail and give

advice regarding what to do in practice. Partial correlation analysis will

be proposed as a useful tool in this context. This method may be useful

both for making PCA results more relevant to the user and also for

obtaining a deeper insight that can lead to improved panel training.

We emphasize that there is nothing wrong with using PCA on the

full data set, it will always reflect the internal correlation structure in

the whole data set. The potential problem is that the assessment of

the relative importance of underlying sensory dimensions may be

biased and sometimes sensory dimensions may appear more/less

important than they deserve.

1.4 | Aspect 4: validation

Validation is another important issue when using PCA (Næs, Varela, &

Berget, 2018). In most applications of PCA one will be interested in know-

ing to which degree one can rely on the different components extracted.

One can of course always consider PCA as only an empirical way of

looking at the data, but some assessment of confidence in the compo-

nents is also often wanted. In this article, we discuss a number of ways of

how this can be done. Different types of validity will also be discussed.

1.5 | Aspect 5: QDA used in relation to
consumer data

In some cases, not all sensory attributes are important for the purpose

they are used for. An example is preference mapping, where for

instance a certain spice or salt level may be important for consumer

preference, but its effect is blurred by the presence of a large number

of attributes that are irrelevant for this problem. If for instance, only

two principal components are considered in external preference map-

ping, the effect of a single important variable appearing in the third

component may pass unnoticed. Another example is studies of satiety,

where in most cases only the texture attributes will be relevant

(Nguyen, Næs, Almøy, & Varela, 2019), not the whole sensory profile.

The present article is a discussion of these five aspects with focus

on interpretation and what type of effects they may have on the

results. Both personal experience, concrete results from sensory data

and basic principles will be important in the discussion. The main pur-

pose is to provide guidelines for the sensory analyst in industry and

science and suggestions of how to use PCA in a safe and reliable way.

The article is not intended for the specialist statistician, but for the

more typical users of these methods in their daily activities and prac-

tice. Some possible pitfalls are underlined and some new suggestions

and tools will be presented and discussed. A short introduction to

PCA is provided here, but for a thorough description of several more

aspects of PCA we refer to Jolliffe (2010). At the end of the article

(Section 10), a number of conclusions and recommendations are given

for each of the issues discussed. The phenomena discussed will be

illustrated by examples using real sensory data sets.

2 | STRUCTURE OF DESCRIPTIVE
SENSORY DATA

The focus of the present article is the use of PCA for descriptive sen-

sory data (QDA data). In most cases, the entries in such data sets will

lie between a lower and an upper limit on some sort of intensity scale.

The different attributes are calibrated to be positioned within this

interval. It should be mentioned that although PCA is a very important

tool in this context, a proper analysis and interpretation of each of the

attributes separately is always recommended.

For the purpose of interpretation and also for some of the tools

proposed, the sensory data will be thought of as generated according

to an experimental design with assessors and products as the two fac-

tors in the design. In more technical terms, each sensory variable can

be considered a sum of contributions from the two factors, product

and assessor, that is,

yijr ¼ μþαiþβjþαβijþεijr ð1Þ

where yijr is the measurement for product i (i = 1,…,I), assessor

j ( j = 1,…J), and replicate r (r = 1,…,R). The α represents the product

effect, β the assessor effect, αβ the interaction between the two, and

ε represents the random error. Note that, when the samples are

obtained according to an experimental design, one can replace the

samples effect α by separate effects for the design factors (see for

example, Næs et al., 2018). It should be mentioned that for ANOVA

purposes, more sophisticated models than Equation (1) have also been

proposed (Brockhoff, Schlich, & Skovgaard, 2015).
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If we combine the models in Equation (1) for the all sensory attri-

butes (K), the joint model can be written as

Y¼XBþE ð2Þ

where Y is the matrix of sensory data (each column of Y represents an

attribute), the X is a dummy matrix (containing zeros and ones) rep-

resenting the design, B is the matrix of unknown regression coefficients,

and E is the random error, that is, the variation in Y not accounted for by

the design. The different columns of B represent the coefficients for the

different sensory variables, that is, they correspond to the Greek letters

in Equation (1). The number of columns/attributes in the data matrix Y is

K and the number of rows will be equal to I*J*R (prod-

ucts*assessors*replicates). We refer to Figure 1 for an illustration of the

data structure in Equation (2). Some places below, the data set Y without

any prior modifications or transforms will be called the raw data.

The data can be analyzed by PCA directly using Y in Equation (2)

or using the data matrix obtained after averaging across assessors and

replicates. In this case Y is sometimes referred to as a consensus

matrix and consists of I rows and K columns.

Another way of organizing QDA data is by using a three-way

array structure with the rows corresponding to samples*replicates,

columns to attributes and slices to the different assessors (Figure 1b).

This type of data structure can be analyzed by so-called multi-way

methods such as PARAFAC (Bro, Qanari, Kiers, Næs, & Frost, 2008),

or one of the Tucker methods (Tucker, 1964), which are extensions of

standard PCA. The data set organized as in Equation (2) is referred to

as a three-way data set, which has been unfolded (see Figure 1b) ver-

tically. The data structure to the right in Figure 1b corresponds to Y in

Figure 1a and Equation (2). The three-way structure and analysis will

not be pursued further here.

3 | SHORT DESCRIPTION OF PCA

Principal component analysis is a so-called component method. This

means that it is based on the idea that a large number of variables in

Y can be approximated by a small number of so-called components

T (sometimes called axes or latent variables) calculated as linear com-

bination YW, where W is the matrix of so-called loading weights

F IGURE 1 (a) Illustration of the setup in Equation (2). The D now represents the number of design variables (including product and assessor
factors plus interactions). (b) Data structure for quantitative descriptive analysis presented as a three-way data set and an unfolded data set. The
illustration is for simplicity only for four assessors. If replicates are present, the vertical dimension will be samples*replicates (I*R)
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(columns of W have length = 1). The components are found by maxi-

mizing their variance and such that each new component extracted is

orthogonal/uncorrelated with previous ones. The first component

describes the most of the variability, the second is the next in the

order etc. A consequence of the criterion used is that variables or vari-

able groups with large variance will have a stronger impact on the

solution than the rest. Usually one extracts only a few components

treating the rest of the variability as noise. After calculation of the

components, they can be related to Y by regression in order to find

the loadings P. The model for PCA can be written as

Y¼TPTþE ð3Þ

Here T represents the few components extracted to approximate

Y and the E is usually thought of as noise. The T's are called scores

and the P's loadings and are usually plotted in scatter plots for inter-

pretation of results.

Although there is an arbitrary choice related to the scaling of T relative

to P, one usually organizes the solution such that the length of the loading

vectors, columns in P, is equal to 1. Then the variance of the columns of

T represent variability along the unit axes defined by the loadings. The

components and loadings can be found using the singular value decompo-

sition, which is a standard mathematical tool for decomposing a general

matrix. For a thorough introduction to PCA we refer to Jolliffe (2010). In

this article, we will consider the components in the order they appear

according to explained variance and no focus will be on rotations.

4 | PCA FOR ORIGINAL OR
AVERAGED DATA?

4.1 | Averaged data for studying product
differences

In most cases in the literature, panel averages are used both for inter-

pretation and for estimating relations with other data, for instance

chemical data. This is a sensible strategy if focus is on product differ-

ences, but should always be accompanied with proper checking of the

panelist quality. If an assessor is clearly outlying/different, it is ques-

tionable to keep him/her as a part of the analysis. This is in

particular true if the number of assessors is low since in such cases

outliers may have a larger impact on the analysis. A number of

methods have been developed for the purpose of checking panel per-

formance (see e.g., PanelCheck software, n.d., Dijksterhuis (1995),

Tomic, Nilsen, Martens, and Næs (2007), Tomic et al. (2010), Dahl and

Næs (2004, 2009)) and Dahl, Tomic, Wold, and Næs (2008), Tomic,

Forde, Delahunty, and Næs (2013)).

4.2 | Different types of panel averages

It should be mentioned that there are different ways of obtaining

panel averages (or a panel consensus). One of them is to use

straightforward averaging as will be focused here. Other possibilities are

Generalized Procrustes analysis (Gower, 1975), STATIS (see

e.g., Schlich, 1996), multiple factors analysis (MFA, Escofier and

Pages (1995)), and various scaling techniques (Romano, Brochoff,

Hersleth, Tomic, and Næs (2008)). Generalized Procrustes analysis

rotates, reflects, and scales (isotropic scaling) the individual assessor data

matrices to make them as similar as possible and then afterward calcu-

lates the consensus as the average. The STATIS method calculates a

weighted average of the individual (cross-product) matrices, where the

weights depend on the RV coefficients between them. MFA concate-

nates the individual data matrices horizontally and essentially runs a PCA

on the combined matrix after a specific individual scaling of each of

them. The resulting scores matrix of this PCA is then used as a consensus

for the individual assessors. An alternative to MFA, with a similar under-

lying idea is the Tucker-2 method used in Dahl and Næs (2009). The scal-

ing methods in Romano et al. (2008) are used to eliminate additive and

multiplicative differences among assessors before averaging. Note that,

all these methods are also suitable for investigating individual differences

among assessors (see e.g., Næs et al., 2018).

4.3 | PCA for original data

If focus is also on individual differences between assessors, one can

use the original Y data in Equation (2) directly without averaging.

There will be several more points in the score plot, one score for each

replicate, assessor and sample combination. For improved interpreta-

tion one can include colors and sample averages as will be illustrated

here. This plot can be useful for visualizing differences/disagreement

among assessors.

If the assessor points for each sample deviate strongly from each

other, it provides evidence that the assessors disagree to a larger

extent. But in general, the differences will always look quite large in

this case due to noise and different use of the scale. For this reason, it

is also possible, to center (and also standardize) each of the assessor

data matrices before PCA. By doing this one eliminates differences in

intensity level on the scale between assessors before analysis (see

also Romano et al. (2008)).

Note that, the explained variances when using the original data

will normally be smaller for the original data than for the averages

since averaging reduces noise (see also example below).

If focus is only on product differences, we recommend to use

averaged data because of simpler plots.

5 | STANDARDIZATION

Different practices for standardization in PCA exist, but whether to

do it or not may sometimes seem to be more a matter of habit than of

serious reflection and consideration. The issue of standardization is

important both for panel averages and for individual data.

For PCA in general, many different types of standardization are

used, but here we confine ourselves to the most used namely division
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by standard deviation. It should be mentioned that using PCA on stan-

dardized data is what some authors phrase as using the correlation

matrix as the basis for the calculation of components.

5.1 | Standardization is not primarily a
statistical issue

It is important to emphasize that standardization is not primarily a sta-

tistical issue. Whether to do it or not is strongly related to how the

sensory attributes are calibrated and interpreted. This is clearly a deci-

sion with a subjective element, made by the panel leader or agreed

upon by the panel during the training session. One could easily envi-

sion that two panels with the same sensitivity to product differences

could be calibrated in a different way leading to another ratio

between the variability of for instance sweetness and hardness and

then possibly different PCA results. Culture and context will also have

an influence on this matter, which can lead to different plots and vary-

ing interpretation of results.

The complexity of the attributes will play a role (i.e., training and

calibration on complex attributes as, e.g., creaminess is not straightfor-

ward), as well as the variability of references. Taste and flavor attri-

butes are usually easier to anchor with reference solutions or

products as compared to texture attributes.

A crucial question is whether one can justify that two attributes,

possibly representing different modalities, can be compared directly or

not. Let us for instance consider two nonstandardized variables hardness

and sweetness, the former with standard deviation equal to 1 and the

other with standard deviation equal to 3. From this it seems that the var-

iability of hardness is three times larger than the variability of sweetness.

The question is how to interpret this in an appropriate manner. Can vari-

ability in hardness and in sweetness really be compared this simply?

5.2 | Interpretation of PCA with and without
standardization

If no standardization is done, the rationale is that the ratio of the stan-

dard deviations of the attributes is considered meaningful. In other

words, without standardization, one relies on the meaningfulness of

the subjective decisions made in the calibration phase. A consequence

of this is that the variables with the larger variance will have the stron-

gest influence on the PCA solution.

If on the other hand the variables are standardized by their stan-

dard deviation (or span or other multiplicative constants), the relative

differences in standard deviation are disregarded. This corresponds

conceptually to saying that for each of the attributes, the anchors

(defining the span) used for calibration of the different attributes are

placed approximately at the same place on the scale. This implies that

differences between two samples are always interpreted relative to

the same variability or span. This means that variables with for

instance initial standard deviations equal to 1 and 3, will end up being

compared as though they have the same standard deviation.

It is important to mention that when using standardization, the

variance of all variables will be the same. This implies that only

the number of variables related to a sensory dimension will be the

driver for order of the components. If for instance, one phenomenon

is described using four highly correlated sensory attributes and

another phenomenon is represented by one attribute only, the first

principal component will represent the phenomenon with the four

attributes and the second component will represent the other vari-

able. Therefore, in such cases, importance of dimensions (in terms of

explained variance) is driven by the number of correlated attributes

representing the same phenomenon rather than by the most dominat-

ing sensory dimension. This shows that it is not obvious how to define

the concept of common concept of “most important sensory dimen-

sions” using QDA and PCA.

5.3 | Eliminate nonsignificant attributes

If one decides to standardize the data, it is important to recognize that

variables with very small variability will then be comparable (i.e., have

the same influence) to the rest. A possible problem with this is that

variables containing mainly noise may become important in the analy-

sis and results. A pragmatic approach to avoid this problem is to test

all attributes for significant product effect, using ANOVA based on

the model (1) above, or a more sophisticated model as proposed in

Brockhoff et al. (2015). If an attribute is nonsignificant, the variable

should be disregarded, thus reducing the amount of noise in the data.

It is important to emphasize that this approach should be used with

care since significance of a variable is not an objective concept and

that significance of an attribute can be deflated due to a few of the

assessors only. Another aspect of eliminating nonsignificance vari-

ables is that variables with low significance are eliminated and one is

left only with variables, which have already proved their significance

in the data. Generally, it is our view that, it is most often better, from

a pragmatic point of view, to remove nonsignificant variables in order

to avoid further problems with noisy attributes.

5.4 | Using correlation loadings plot

Correlations loadings (Martens & Martens, 2001) are defined as the

correlations between the original variables and the components. This

provides a plot similar to the standard loadings plot with two axes, but

is in addition, most often equipped with circles indicating 100 and

50% explained variance. The correlations loadings have the advantage

that they highlight variables with low variance that may have a strong

correlation with the components.

It is tempting to think of correlation loadings as a way of eliminat-

ing the problem of standardization. However, this is not always the

case since correlation loadings only represent a post processing pro-

cedure after the principal components have been estimated. The

method may be better at highlighting the relations between variables

with a small initial variance (and which therefore have little influence
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on the solution) and the components, but this does not change the

data for which PCA is calculated. For standardized data, the two are

the same except for a scaling factor. We here use the unit circle scal-

ing for the correlation loadings.

6 | CORRELATIONS BETWEEN VARIABLES

A PCA solution is determined by the variance–covariance structure

among all the variables in Y. More precisely, PCA tries to explain as much

as possible of the variance in Y. This means for instance that if several

variables describe the same phenomenon, this phenomenon may repre-

sent more variability than the underlying phenomenon deserves, possibly

only because a panel leader may have chosen to have the panel evaluate

these variables. To PCA it will then look more important than other

dimensions, which may be represented only by one single attribute.

6.1 | Avoiding highly correlated variables

It is generally recommended that too much repetition of information

should be avoided in order to reduce unnecessary bias and focus for

the PCA. Some of these repetitions may be quite obvious such as

using confounding attributes as for example, dark/light and hard/ten-

der (see introduction), while others may be more subtle and difficult

to identify directly without data analysis. Assessors may for instance

have problems discriminating between two or more cognitively similar

attributes and will automatically score them similarly. This is known as

halo dumping effect. It comes from the human desire of consistent

cognitive structures and has been widely described in the sensory lit-

erature (see e.g., Clark & Lawless, 1994). Correlation between

unrelated attributes may also happen when one salient negative attri-

bute causes another to be rated in the same direction, Such correla-

tions are known as horn effects, common when describing defective

samples (Lawless and Heyman (2010)). This is an unfortunate situation

and having tools to detect such cognitive coincidence is important for

more relevant analysis and interpretation of PCA and for improved

training of the panel. One of the objectives of panel training is to

achieve de-correlation of the attributes, and avoid redundancy leading

to particular issues in multi-product panels, as some attributes can be

correlated for one product but not for another.

6.2 | Correlations at different levels

Correlation between attributes/columns in Y can be due to correla-

tion induced by the design (X in Equation (2), representing sample,

assessor and interaction) and by the random error E in the model. The

correlations between variables in XB are the most important since

these are functions of the design of the study. Correlations among the

variables in E are, however, conceptually more problematic. This calls

for investigating the correlation structure for XB and E separately and

sometimes also for the products and assessors separately. We will

next discuss a possible tool to use for detecting correlations among

the variables in the before we describe briefly a few methods for

studying XB by PCA.

6.3 | Partial correlation for detecting correlations
among random errors in Equation (2)

The concept of partial correlation between variables was developed

for the purpose of correlating two variables with each other after they

have been conditioned upon a third variable (or set of variables). This

is equivalent to correlating the residuals E for the two variables with

each other after they have been regressed onto the same variables. If

the partial correlation among two variables is high, one should con-

sider eliminating one of them from the PCA to avoid the problem dis-

cussed above. This type of information may also be important for

retraining the panel and to improve its performance. Since this type of

correlation will most typically be present at the individual level, corre-

lation between residuals at an individual level will be given the stron-

gest focus here.

There are different ways of implementing this idea, but here we

will confine ourselves to results obtained from the residuals for all var-

iables after a full two-way ANOVA of the data (Equation (1)). The true

partial correlations will be presented, but for the individual assessors

we will only consider correlations between the residuals from the full

ANOVA of all assessors.

6.4 | PCA for the systematic part XB of
Equation (2)

An important PCA based methods for analyzing the systematic part XB

is ASCA (Jansen et al., 2005). PCA plots for this method can be used to

reveal cases with highly overlapping attributes as discussed above. The

effects of the assessor and product (and their interactions) are first esti-

mated using the model (1) and standard ANOVA methods. Then the

effects for the different factors are further analyzed by PCA using all the

response variables. This is equivalent to estimating B in Equation (2), then

splitting the XB contribution into three parts, the assessor part, product

part and the interaction part. Analyzing each of them by PCA results in

three separate PCA models. In mathematical terms this means that XB is

essentially written as X1B1 + X2B2 + X3B3 and each of the terms is

treated separately by PCA after estimation of the B's. In this way, infor-

mation is obtained about the variability structure of the sensory attri-

butes for the assessors, products, and interactions separately (see Liland,

Smilde, & Næs, 2018). This means that this method can reveal correla-

tion structure at the sample level and assessor level separately. The PC-

ANOVA (Luciano and Næs (2009)) is related, but reverses the order of

ANOVA and PCA. First a PCA is run for Y and then the scores for the

first few components are related separately to the design using the

model (1).
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7 | VALIDATION OF PCA MODELS

When using PCA, there is always a question of how many dimen-

sions/components that can be interpreted safely, regardless of

whether it is applied to individual assessor data or panel averages.

PCA will always provide a model or solution, but the question is

whether it is valid in the sense that it is reproducible. Before consider-

ing methods for assessing validity, we will discuss different types of

validity.

7.1 | External validity

This validity looks into whether the model can tell something about a

larger population of samples or not. In sensory science this case is

often not of highest interest since the samples considered are the

samples at hand and very often these are not selected to represent a

larger population. Typically, the samples are from product develop-

ment, quality control, or another more specific situation and as such,

the samples do not represent something else than themselves and the

perceptual space they span. The fact that the number of samples is

often also very small and sometimes based on an experimental design,

makes it even more difficult to interpret them as representing some-

thing bigger.

Leave one-out cross-validation (CV) of samples is a method,

which was originally developed for external validation of regression

models (Stone, 1974). It can also in principle be applied for PCA if the

explained variance of Y is used as a criterion. As argued among others

in Næs et al. (2018), this method is for the above reasons not always

suitable in PCA studies of sensory data. It may give reasonable indica-

tions of number of components to rely on in medium size data sets,

but one should, always be careful with small data sets (e.g., 4–5 sam-

ples), especially if the samples were designed to be very different from

each other. In the results section we will give an example for a very

small data set and a normally sized set.

For standardized data, the leave-one-out CV can be done in

slightly different ways. Here, we have used the following procedure:

every time an object is left out, the remaining data are standardized

prior to PCA. Then the sample, which is left out is corrected for the

mean and the standard deviations from the samples used for model

building, before calculating how well it fits.

7.2 | Internal validity

Internal validity of a component means that a component is more

meaningful or describes a larger percentage of variance than the vari-

ance that can be obtained by chance, that is, in data sets without an

underlying structure. Therefore, comparing true explained variance

with what is obtained by chance is a possibility. This type of validity is

only referring to the data set under study and will not tell anything

about how well the model represents a population of other samples.

The CV as defined by Wold (1978), which is based on successively

creating subsets for validation by eliminating entries according to a

diagonal pattern of the data set, can be considered an internal valida-

tion method. Here we will, however, concentrate on a method based

on permutations as proposed in Endrizzi, Gasperi, Rødbotten, and

Næs (2014) and later studied and modified by Vitale et al. (2017). We

will here use the original version.

7.2.1 | Permutation testing

The idea behind the method is that for each new component to be

tested, the residuals from the model based on all previous compo-

nents are permuted (for each column separately) and then orthogonal-

ized with respect to both columns and rows (since this is the case for

the true residuals in a PCA). Then, one calculates the explained vari-

ance of the permuted residuals data set and compares it with the true

explained variance. This is done by comparing the explained variances

for the component considered relative to the variance left in their

respective data sets (permuted residuals and true residuals). The pro-

cedure is repeated for a large number of permutations (e.g., 1,000, as

used here). The results are then presented in a plot with component

number on the X-axis and the explained variances as described above

on the Y-axis. For the real data, there is only one point for each com-

ponent, but for the permuted data, we will here present three values,

the median, the lower 5% percentile and the upper 5% percentile,

obtained from a large number of permutations. The lower and upper

values are there for assessing the uncertainty of the estimates. If the

true value falls clearly above the confidence band obtained by

the two percentiles, the component can be judged significantly differ-

ent from that generated by chance and therefore worth looking

at. Although assessing the number of components is essentially a one-

sided test, we here prefer the setup used to indicate the uncertainty

in both directions. For details we refer to Endrizzi et al. (2014).

7.2.2 | Assessor based CV

If original data are available at individual assessor level, another possi-

ble internal validation method is to compare results for the different

assessors, that is, to cross-validate the assessors instead of the sam-

ples. We here refer to the block splitting according to assessor illus-

trated to the right in Figure 1b. A possible way of doing this is to

project each assessor, that is, each segment removed, onto the space

spanned by the rest of the assessors and compute the average

explained variance over the segments. This method can also be used

to identify outlying assessors by looking at the individual contribu-

tions to the explained variance.

7.3 | Validation using external information

In some cases, there may be other data available about the samples,

for instance, chemistry data, spectroscopy data, or simply the
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experimental design. In such cases it is possible to regress the (for

instance) average sensory attribute scores (across assessor and repli-

cates) onto the external data and then evaluate how much of the sen-

sory data that can be accounted for by the external variables/

measurements. Such a method was used in Dahl and Næs (2004) for

relating the average sensory profile to external near infrared (NIR)

spectra. Explained variance of the sensory profile obtained from the

NIR data was then used as criterion of validity. In the article, the same

was also done for each individual assessor separately in order to iden-

tify outliers.

If PCA is run on the raw data Y (Equation 2), the PC-ANOVA

method mentioned above can also be used for validation. Each princi-

pal component for the full data set is now regressed onto the design

variables (product, assessor and interactions) using the model (1).

Note that, this can be done in all possible cases with more than one

replicate since the sample factor here only refers to the samples

tested and not necessarily to a particular experimental design for the

samples. It must be stressed, however, that the significance tests in

such a model may be quite strong tests due to the large number of

observations. One should therefore in addition to looking at degree

of significance also look at the explained variances of the components

in order to evaluate relevance. A component with very small explained

variance and only borderline significant product factors is usually not

worth focusing on too much. Significance testing in this case may

therefore in general be more useful for assessing the significance of

the first 2–3 components rather than evaluating how many compo-

nents further out that are significant.

7.4 | Validation using confidence intervals

In addition to focusing directly on the significance of a component,

confidence intervals or ellipsoids for each sample is a good option.

They are primarily meant for assessing stability of solutions, but can

also be useful for indicating how many components that are worth

considering. Bootstrap procedures as illustrated for instance in

Cadoret and Husson (2013) are the most important to use in this case.

The method is based on resampling assessors at random (the same

number as in the original panel) and calculating the scores for each

selection (after averaging over assessors). These are then projected

onto the scores plot of the original averaged PCA and confidence

ellipses are drawn based on this for each sample.

8 | IMPLICATIONS FOR RELATIONS TO
CONSUMER DATA

As mentioned in the introduction, very often a sensory data set is not

only used for understanding the variability in the sensory properties

of samples. A typical example is preference mapping where the main

focus is on relating consumer liking to sensory data. One can do this

by analyzing one sensory attribute at a time, but a more typical way is

to use PCA of the sensory data (or PLS regression) and regress the

liking for different consumers onto the first couple of components

(often only 2). If then a specific attribute with minor relation to the

main variability of the sensory data set, has an important influence on

the liking, it will not be visible in standard external preference map-

ping analysis with two components. Typical examples are salt level

and spices which may influence liking strongly, but do not account for

much variability in the sensory data. One should therefore inspect

more than two components or supplement (or replace) the analysis

with an internal preference mapping, where PCA is applied to the lik-

ing data and sensory data are regressed onto the these principal com-

ponents. PLS regression could be another alternative for such data

(see e.g., Næs et al., 2018).

Satiety study is another important example where the whole sen-

sory profile is not needed for explaining consumer data. This was

demonstrated in Nguyen et al., 2019. In such cases, the texture prop-

erties are the essential ones for relating to satiety; the rest may not

add information to explain the problem at hand, or can at worst blur

the focus and results of the study.

9 | CASE STUDIES

9.1 | Data sets used

Table 1 shows the structure of the three data sets used in the differ-

ent examples.

9.2 | Case 1. Should one average or not before
computing PCA on sensory data? Exemplified using
yogurt data

The data used for visualizing the differences between using the PCA

for average data and for the individual data before averaging is a yogurt

dataset with 8 samples and 21 attributes, (Nguyen et al. (2019)). An

experimental design with three factors at two levels is used for produc-

ing the samples. In this case, we focus on standardized data for visuali-

zation (after elimination of the single nonsignificant attribute at 5%

level).

The results are presented for panel averages and raw data in

Figure 2 and Figure 3.In Figure 3, the average component scores

across assessors for each sample are superimposed using diamond

shapes. As can be seen, the loadings are quite similar for the two PCA

models, but the explained variances are larger for the averaged data

due to the averaging process, as explained above. The main difference

in loadings is that dryness in mouth and astringent form an own group

of attributes for the individual data while for standardized data they

are grouped together with sandy, stale odor, and so on. There are

quite large individual differences around each sample average in

Figure 3 (scores with same color). Still, the average scores for each

sample are quite similar to the scores in Figure 2. This means that the

essential information is similar for the two analyses. The former pro-

vides a simpler plot, while the second gives an opportunity for
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studying individual differences. As will be seen below, the latter also

allows for an ANOVA test for the components. In practice choosing

between the two is often a matter of scope of the study and need for

simplicity. Most of the discussion below will be focused on average data.

9.3 | Case 2. Should one standardize or not before
PCA? Exemplified using olive oil data

An illustration of the effect of standardization will be given using

data from sensory analysis of olive oil (based on averages over

assessors). The results are presented in Figure 4–d. Figure 4a gives

results from PCA on the full set of variables without standardization,

while in Figure 4b, PCA is based on the full set of standardized vari-

ables, Figure 4c shows results of PCA for only significant variables,

not standardized, while Figure 4d shows PCA results for significant

standardized variables. In all cases the explained variances were high,

about 90% after three components. The three components look sig-

nificant using leave-one-out CV, and this is also confirmed by the

other premutation based method to be shown below.

The Figure 4a shows that loadings and correlation loadings plot

are quite different without standardization. The Figure 4b shows that

TABLE 1 Overview of quantitative
descriptive analysis data sets used

Data set Number of samples Number of attributes Number of assessors

Yogurt 8 21 9

Olive oil 11 and 4 20 Only averages used

Bread 8 13 Only averages used

Note: For the olive oil data set also the small subset is tested. For the bread data also consumer liking

data for a number of consumers were available.

F IGURE 2 Yogurt data. Standardized PCA on consensus data, 20 significant attributes

F IGURE 3 Yogurt data. Scores and loadings for the standardized PCA based on individual data, 20 significant attributes
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F IGURE 4 (a) Olive oil data. Full data set nonstandardized. (b) Olive oil data. Full data set standardized. (c) Olive oil data. Reduced data set
nonstandardized. (d) Olive oil data. Reduced data set standardized
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the scores plot change significantly after standardization, but now the

loadings and correlation loadings are quite similar. Correlation loadings

are also different in Figure 4a,b. This means that standardization has an

effect on scores and loadings if used on all variables without considering

significance. Also, correlation loadings may change with standardization.

After eliminating nonsignificant variables (Figure 4c. Six attributes

eliminated), we see that the scores are back again to the ones

obtained without standardization for the full set of variables

(Figure 4a). Correlation loadings and loadings are still different, but

less so if we compare with the full data set. Standardization

(Figure 4d) now has little effect (for reduced data) on the loadings

except for one variable close to the middle. Scores are almost the

same for Figure 4c,d. After standardization, loadings and correlation

loadings in Figure 4d are identical except for the scaling.

In conclusion, after elimination of nonsignificant variables, the

results are similar regardless of whether one standardized or not. This

is true for both scores and loadings.

Comparing full and reduced data sets, we see that scores are almost

the same except for the standardized full data set (Figure 4b). Two of the

attributes (acidic-O and oxidized-O) that show up in the full data

set along the second component are not present in Figure 4c,d since

they are nonsignificant. They are also less visible in Figure 4a. These two

are examples of variables that are “inflated” when standardized. This

phenomenon is quite frequent with off-flavors or other attributes that

may appear in low intensities (i.e., spicy). After standardization low scor-

ing attributes will get a larger importance in the outcome.

Our advice is to eliminate nonsignificant variables since it then mat-

ters less what is done regarding standardization. The standardized results

F IGURE 5 Olive oil data. Heat map of correlations between residuals for different attributes. Over all assessor in (a). The other three, (b–d),
represent three individual assessors
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with all variables, including nonsignificant ones, are the most different

from the rest. One should focus on a good training for the low scoring

attributes when relevant for the products or objective of the study.

9.4 | Case 3. Many correlated sensory variables.
Exemplified using yogurt and olive oil data

Figure 2 shows PCA results from the yogurt experiment in Nguyen

et al. (2019) (based on a 23 design). Most of the variables contrast

each other along the first axis. This means that the large variability

accounted for along this axis to a large extent is due to the many

variables measuring more or less the same phenomenon. This is

important information per se, but it clearly gives a biased impression

of the relative importance of the two components or underlying

dimensions (62 and 20%). Eliminating several of the highly correlated

variables along the first component, leads to a different relative

weighting of the two axes. In other words, the relative importance of

the components is dependent on how many strongly correlated vari-

ables that are in the data set.

In practice, there is no fixed rule for how to possibly reduce the

profile other than the obvious ones, for instance, dark/light. It is, how-

ever, important to be aware of this fact and interpret results

accordingly.

F IGURE 6 Olive oil data.
Nonstandardized PCA, 14 significant
attributes. The illustration in (a) shows the
curve obtained by the permutation
method. The points represent the
quantiles for each of the number of
components. In (b) is presented explained
variance for fitting/calibration and leave-
one-out cross-validation
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9.4.1 | Partial correlation results

An illustration of the use of the partial correlation concept discussed

above is given in Figure 5 for the olive oil data set, both for the whole

panel (Figure 5a) and for three individual assessors (presented in

Figure 5b–d). There is some correspondence between panel and indi-

viduals, but the individuals are also quite different. The panel clearly

has a large partial correlation between grass flavor and grass odor,

between astringency and burning, between astringency and bitter and

between bitter and burning. The same tendency holds for two of the

individuals presented, but the third does not share this particular ten-

dency. For the assessor in Figure 5b, there are also many partial corre-

lations among some of the attributes in the middle of the plot, for

instance, between grass flavor and a number of the other attributes.

For this specific assessor there is good reason to question his/her

interpretation of the attributes involved and consider a retraining.

9.5 | Case 4. Validation based on CV and
permutation testing. Exemplified using olive oil data

Figure 6 shows results from the permutation test (Figure 6a) and standard

leave-one-out CV (Figure 6b) for the olive oil data (see above for details)

In the permutation test the true explained variance is far outside the confi-

dence interval for components up to 3. After that it is inside, which indi-

cates that from Component 4 one cannot distinguish the component from

noise. Ten components are the maximum number possible and therefore

no confidence interval can be computed for the tenth component.

This data set is also quite suitable for the leave-one-out CV since

there are many very similar samples and no unique ones. As can be

seen (based on the explained variance along the vertical axis), also the

CV indicates clearly that at least three components can be inter-

preted. After that the improvement is negligible. The advantage of the

randomization test is that it gives a statement of significance.

F IGURE 7 Olive oil data. Four samples, standardized PCA, 14 significant attributes. (a) scores, (b) correlation loadings, (c) cross-validation, and
(d) permutation testing
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9.5.1 | An illustration based on reduced data

For illustrating the problems with standard leave one out CV for small

data sets, we selected a subset consisting of only four samples from

the olive oil data and computed a new PCA model based on standard-

ized data. The scores and correlation loadings are given in Figure 7a

and b), respectively. The leave one out CV (Figure 7c) gives meaning-

less results since each sample is unique and the model changes sub-

stantially every time one sample out of four is left out during cross-

validation. Note that, a negative value of explained variance is not

possible when fitting the data by PCA, but for validation it can happen

when data left out (a segment or single samples) fit very poorly to the

model estimated by the rest of the data.

The permutation method (Figure 7d), on the other hand, indicates

that the first component is reliable, while the second is not. This

means that the vertical axis has no statistical power regarding inter-

pretation. In other words, there is no general tendency (underlying

common component) representing common variability among samples

along the second component. It should be emphasized, however, that

statistical properties of the permutation test for such small data sets

have not yet been tested out, so care must be taken not to

overinterpret the results. It should also be mentioned that this is a

very extreme case for CV and incorporated just to illustrate how prob-

lematic it can be for very small data sets.

An interesting observation is that the loadings plot change when

a subset (oils 3, 7, 10, and 11) of the full set of samples (oil 1–11) is

F IGURE 8 Yogurt data. PCA-ANOVA
results, standardized PCA, 20 significant
attributes. (a) Multiple comparisons for
products. Line indicates range of no
significant differences. (b) F-values for the
product effect factor. The significance is
indicated with color as given in panel in
the upper right corner

14 of 18 NÆS ET AL. Journal of
 Sensory Studies



used (see Figure 4d). This underlines that interpretation of a subset of

samples only relates to this specific subset at hand and cannot be gen-

eralized to the sensory space of the full set of samples. Conclusions

will then always be local and of limited value for saying something

about a larger set of “similar” samples.

9.5.2 | The use of PC-ANOVA for validation

PC-ANOVA (Luciano & Næs, 2009) was applied to the standardized

yogurt data and compared to the use of the permutation test for the

consensus/average data set. The results are presented in Figures 8a,b

and 9. As can be seen, the results correspond reasonably well, the first

three components are obviously significant, while number 4 is more

questionable. It seems that the PC-ANOVA finds significance further

out (components 5 and 6), but these components represent so small

variance that they are not very interesting in practice. Also, the fact

that component number 4 is nonsignificant is an indication that one

should not consider further components after Component 3. The

explained variances for the 5 first consensus components are 64.4,

21.1, 9.5, 2.7, and 1.2. For the PCA done on raw data the

corresponding values are 28.2, 17.2, 10.4, 9.1, and 6.8. As can be

seen, the drop in this case is smaller from the fist to the second

component.

9.6 | Case 5. Relations between QDA and
consumer data. Exemplified using bread data

For this example based on external preference mapping, a bread

data set with 8 samples (based on a 23 design) and 13 attributes is

used. The data set consists of both QDA data and consumer liking

of the same samples. Only the averages will be considered

for QDA.

In Figure 10a,b, correlation loadings plots of Component 1 versus

Component 2 and for Component 1 versus Component 3 are shown.

As can be seen, there is a major tendency in liking toward Component

3 dominated by salt taste. This tendency is not visible in the plot of

Component 1 versus Component 2 where salt is lying well within the

50% explained variance circle.

This shows that relying only on a two-dimensional external pref-

erence mapping plot can leave important drivers of liking undetected.

10 | CONCLUSIONS AND SUGGESTIONS

10.1 | Using averages over assessors or raw data

The average data will give a simpler solution to look at, but no

information about individual differences across assessors in the

panel. When choosing averages it is not possible to apply PC-

ANOVA the way presented here for deciding on the number of

components. If averaging is used, one should always do a proper

check on the reliability of the individual assessors before

averaging.

10.2 | Standardization

The calibration and training procedure should be considered and

evaluated for making a decision on whether to standardize or not.

The focus should be on the meaningfulness of relying on actual

F IGURE 9 Yogurt data. Standardized
PCA. Twenty significant attributes.
Permutation test for PCA based on
averages over assessors
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F IGURE 10 Bread data. Nonstandardized PCA. Correlation loadings for external preference mapping. (a) Component 1 versus Component

2. (b) Component 1 versus Component 3
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differences in variability of different attributes (possibly belonging

to different sensory modalities) in the analysis. If these are not

meaningful, one should standardize. This is an interesting aspect

when comparing results from different panels. In such cases, the

need for standardization is stronger unless the training procedure is

harmonized between the labs. If clearly nonsignificant variables are

present, one should be careful about incorporating them in a stan-

dardized analysis.

10.3 | Using all attributes or eliminating obvious
overlap

Eliminating highly correlated variables will in most cases have only a

moderate effect on the interpretation. One should be careful about

strong statements about what are the most important sensory dimen-

sions since this will depend on the number of attributes that represent

it. A tool based on partial correlations is presented that can enhance

insight into nontrivial overlap among attributes.

10.4 | Validation of components

Leave-one-out CV is often not the best choice in sensory analysis

when samples are unique and few. In such cases an alternative is to

use permutation testing.

10.5 | Relating sensory QDA data to consumer
liking data

In this case, it is important to be aware that not all variables may be of

interest. If obvious candidates exist, one should consider excluding the

noninformative variables. On the other hand, there may be important attri-

butes that are not so visible when considering only few principal compo-

nents of sensory data. It is always recommended in such cases to compute

a PCA model of consumer liking data to support the conclusions. Alterna-

tively, one can take the latter as point of departure and regress sensory

variables individually onto the PCA solution (internal preference mapping).
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