

VIRTUAL CONFERENCE | 25–30 JULY 2021 | #SEFS12

Abstract Book

The geography of metapopulation synchrony in dendritic river networks

Dr Stefano Larsen^{1,2}, Prof Lise Comte³, Dr Ana Filipa Filipa⁴, Prof Marie-Josee Fortin⁵, Dr Claire Jaquet⁶, Dr Remo Ryser⁷, Dr Pablo Tedesco⁸, Prof Ulrich Brose⁷, Prof Tibor Erős¹⁰, Dr Xingli Giam⁹, Dr Katie Irving¹¹, Prof Albert Ruhi¹¹, prof Sapna Sharma¹², Prof Julian Olden¹³

¹Fondazione Edmund Mach, ²University of Trento, ³Illinois State University, ⁴CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, ⁵University of Toronto, ⁶Complex Systems Lab, INRAE, ⁷German Centre for Integrative Biodiversity Research (iDiv), ⁸UEDB, Université Paul Sabatier, ⁹University of Tennessee, ¹⁰MTA Centre for Ecological Research, Balaton Limnological Institute, ¹¹Department of Environmental Science, Policy, and Management, University of California, Berkeley, ¹²Department of Biology, York University, ¹³School of Aquatic and Fishery Sciences, University of Washington

7E_SS19 Aquatic metacommunity ecology in depth: ecosystems, scales and applications, July 29, 2021, 10:30 - 12:00

Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats.