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Abstract

Automated contact detection by means of proximity loggers

permits the measurement of encounters between individuals

(animal‐animal contacts) and the time spent by individuals in

the proximity of a focal resource of interest (animal‐fixed

logger contacts). The ecological inference derived from

contact detection is intrinsically associated with the distance

at which the contact occurred. But no proximity loggers

currently exist that record this distance and therefore all

distance estimations are associated with error. Here we

applied a probabilistic approach to model the relationship

between contact detection and inter‐logger distance, and

quantify the associated error, on free‐ranging animals in

semi‐controlled settings. The probability of recording a

contact declined with the distance between loggers, and this

decline was steeper for weaker radio transmission powers.
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Even when proximity loggers were adjacent, contact detec-

tion was not guaranteed, irrespective of the radio transmis-

sion power. Accordingly, the precision and sensitivity of the

system varied as a function of inter‐logger distance, radio

transmission power, and experimental setting (e.g., depend-

ing on animal body mass and fine‐scale movements). By

accounting for these relationships, we were able to estimate

the probability that a detected contact occurred at a certain

distance, and the probability that contacts were missed (i.e.,

false negatives). These calibration exercises have the po-

tential to improve the predictability of the study and en-

hance the applicability of proximity loggers to key wildlife

management issues such as disease transmission rates or

wildlife use of landscape features and resources.

K E YWORD S

bio‐logging, error measurement, false negatives, false positives, focal
resource use, proximity loggers, wildlife encounters, wireless sensor
networks

In ecology, a contact is defined as the spatial and temporal proximity of 2 individuals at or below a threshold distance,

within a defined interval of time (Cross et al. 2012). Contacts can be quantified through different methods based on

the collection of data from an array of bio‐logging sensors. Specifically, Global Positioning System (GPS) locations can

be used to map areas of spatiotemporal overlap within animal home ranges (Long et al. 2015) and to infer co‐location

rates from which proximity patterns can be inferred (Pepin et al. 2016). When used in conjunction with on‐board

cameras, GPS‐collars permit the observation and characterization of contacts between animals (Bombara et al. 2017).

Research on proximity detection and inter‐individual relationships has been spurred by the introduction of proximity

loggers in animal ecology (Ji et al. 2005, Lavelle et al. 2014, Williams et al. 2020). These bio‐logging devices, that in

some systems can be combined with GPS to determine the location of a contact (Picco et al. 2015), detect proximity

events by exchanging ultra high frequency radio beacons (usually 434–868MHz, but higher in some systems [e.g.,

2.4 GHz]; Picco et al. 2015), thus recording the identity of the connecting loggers, an index of the quality of the

received radio signal (received signal strength indicator [RSSI]), and the duration of the contact.

The communication between these loggers forms a wireless sensor network (Picco et al. 2015, Whitford and

Klimley 2019), where proximity loggers can be attached to free‐ranging animals (mobile loggers), or deployed at

specific focal resources (fixed loggers; Ossi et al. 2016), creating the basis for relevant ecological investigation (Kays

et al. 2015). Animal‐to‐animal contact detection (mobile–mobile contacts) allows the exploration of social behavior

and learning (Krause et al. 2013), for example through social network analysis (Farine and Whitehead 2015), disease

transmission models (Böhm et al. 2009, Drewe et al. 2012), or the detection of predator‐prey interactions and kill

sites (Tambling and Belton 2009). Additionally, animal‐to‐focal‐resource contact detection (mobile–fixed contacts)

allows the monitoring of focal resource use by an individual (Hayward and Hayward 2012, Ossi et al. 2017) and the

ability to record indirect contacts between wildlife species visiting the same resource, which can influence the

transmission of diseases (Lavelle et al. 2016).

One of the most important parameters associated with contact detection is the distance at which the proximity

events occur (Cross et al. 2012). For instance, an assessment of pathogen transmission via direct contact between
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domestic and wild animals might require, in some cases, the detection of a short distance (e.g., 1–2m; Böhm et al.

2009, Drewe et al. 2012) whilst interactions involving social learning or territory defense do not necessarily occur

within short distances (Rutz et al. 2012). Assessing the distance at which a given contact occurs is therefore a key

step for properly inferring the underlying ecological interactions of the encounters measured by proximity loggers

(Rutz et al. 2012, Krull et al. 2019).

Proximity loggers do not directly measure contact detection distance (Williams et al. 2020). Radio signals attenuate

with distance (Rutz et al. 2015) depending on the transmission power (Ossi et al. 2016), which is the factor that mainly

affects the distance at which loggers detect each other. Several researchers have proposed the association between a

certain radio transmission power and a determined inter‐logger detection distance (Böhm et al. 2009, Drewe et al. 2012),

but such relationships are complicated by the intrinsic variability of radio wave propagation (Ceriotti et al. 2010). This

variability causes the relationship between contact detection and inter‐logger distance to follow a probabilistic step‐

declining function, which is composed of 3 distinct zones: an area of maximum connectivity, or white zone, ranging

between zero and distance W, yielding the best conditions for contact detection (i.e., theoretically close to 1, all contacts

detected); a black zone, beyond the maximum range of contact detection R, where contact detection cannot occur; and a

grey zone of gradual transition between W and R, where connectivity is not guaranteed but may occur (Zuniga and

Krishnamachari 2007). Within the grey zone, errors in contact detection are likely to happen, which may bias the derived

ecological inference. When calibrating proximity loggers, users should therefore focus on these errors and estimate the

precision and sensitivity of the system under investigation (Burns and van Loon 2015). If overlooked, these errors may

bias the estimation of connectivity rate between individuals (Boyland et al. 2013, Bettaney et al. 2015), with profound

consequences on the ecological inference, and thus on the implementation of appropriate resource management action.

For example, contact rate between individuals is one of the key parameters in modeling disease transmission dynamics

(e.g., for chronic wasting disease [CWD]; Potapov et al. 2013). Similar considerations apply to the monitoring of animal

focal resources (Mennill et al. 2012, Ossi et al. 2016) where the knowledge of contact detection error helps the user to

correctly estimate the actual use of a given resource (e.g., water holes; Chamaillé‐Jammes et al. 2016).

Calibration exercises have so far been rather limited and, when performed, have not fully accounted for the

errors associated with contact detection. The first attempts mainly targeted estimation of the accuracy and pre-

cision of the RSSI as an indicator of the inter‐logger distance (Rutz et al. 2015, Triguero‐Ocaña et al. 2019), with

contrasting results (Krull et al. 2019). Only in a few cases has contact detection been envisioned and modeled as a

probabilistic rate of successes over a series of attempts (Ossi et al. 2016) that varies as a function of inter‐logger

distance (Krull et al. 2019) and other environmental factors (Triguero‐Ocaña et al. 2019). The monotonically

declining probabilistic relationship between contact success and inter‐logger distance has been investigated (Krull

et al. 2019, Triguero‐Ocaña et al. 2019), but there remains a substantial knowledge gap as to the pattern of

underlying errors: false negatives (expected contacts at a given distance that were not detected) and false positives

(unexpected contacts that were detected at a given distance).

We characterized and modeled the structure of these error components in contact detection, thereby

making them explicit and measurable. We thus evaluated the precision and sensitivity of the system (Table 1),

ultimately obtaining an error profile at each inter‐logger distance for different radio transmission powers. We

performed this calibration exercise in 2 experimental settings where we could observe and record the 2 types of

TABLE 1 Double‐entry matrix denoting the errors, and the associated metrics to measure them, based on
combinations of expected and occurred contacts. Pr = precision; FNR = false negative rate; Se = sensitivity

Expected contact Not expected contact Error metric

Detected contacts True positives (TP) False positives (FP) Pr = TP/(TP + FP)

Not detected contacts False negatives (FN) True negatives (TN)

Error metric FNR = FN/(FN+TP) = 1 − Se
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proximity events: those between animals (mobile–mobile contacts) and those between animals and a mimicked

focal resource (mobile–fixed contacts). We conducted the first experiment on domestic horses habituated to the

presence of humans, to easily observe and record the proximity events between them. We then ran the second

experiment on roe deer (Capreolus capreolus; deer) kept in semi‐captivity, which were the ultimate target of our

calibration assessment. We expected to observe a declining relationship between contact probability and dis-

tance between loggers for each tested radio transmission power, with consistent patterns between the 2

experimental settings.

STUDY AREA

We ran the first experiment on contacts between animals (mobile–mobile experiment) on 4 domestic horses in a

fenced area (~3 ha) in Scorgiano village, central Italy, 200m above sea level (coordinates: 43.349586, 11.159367)

over 28 days, from 16 February to 17 April 2014 (Figure 1). The study area was characterized by gentle slopes

without obstacles (trees, buildings) that could potentially hamper logger connectivity.

We performed the second experiment on contact detection between animals and a mimicked focal resource

(mobile–fixed experiment) on 2 deer living in captivity in 2 separate sections of a fenced area (~1.5 ha) within

Stelvio National Park in the Italian Alps (Pejo town, 1,500m above sea level; coordinates: 46.358140, 10.667310).

We ran the tests over 5 days, from 14–18 June 2014. We captured the deer using drive nets (López‐Olvera et al.

2009), and fitted them with mobile loggers. We deployed a fixed logger in a waterproof box on a wooden pole at

1.5 m height from ground, within the section of the fenced area where one deer ranged but still close enough to the

other section to guarantee contact detection with the other deer (Figure 1). The study site was characterized by a

moderately steep meadow, with some trees interspersed in the lower part of the fenced area, mainly spruce (Picea

abies), laburnum (Laburnum anagyroides), and birch (Betula pendula). In both experiments, weather conditions were

sunny or cloudy, with neither rain nor severe winds, and comparable air temperature ranges; hence, we did not

expect atmospheric conditions to bias the results of the experiments.

F IGURE 1 A) Scheme of the experimental protocol implemented to measure the inter‐logger distance. B) The
experimental setting of the mobile–mobile experiment on horses wearing mobile loggers (ML). The experiment was
performed in Scorgiano village, central Italy, from 16 February to 17 April 2014. C) The mobile–fixed experiment on
roe deer (1 roe deer is pictured in the upper box). The dashed line denotes the separation of the fence, the black
circles represent the interspersed trees at the bottom of the fence, and the triangle indicates the position of the
fixed logger (FL). The experiment was performed in Pejo town, Italy, from 14–18 June 2014
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METHODS

Deployment of proximity loggers on free‐ranging animals

We used a recently introduced proximity logger prototype that combines contact detection with GPS acquisition

(WildScope, developed by a consortium of partners in Italy; Picco et al. 2015, Ossi et al. 2016). We tested contact

detection among the 4 horses at 4 radio transmission powers (from weaker to stronger, with associated expected

detection threshold distances when available from previous in vitro studies: 3 = −25dBm (4m), 7 = −15 dBm (10m);

11= −10dBm (not available); 15 = −7 dBm (23m). Picco et al. (2015) provide additional details. Deer loggers were set to

power 7 only, to minimize the stress on the deer potentially induced by the multiple recaptures needed to change

configuration settings. In their fenced areas, the horses and deer could move freely with no human disturbance. The

experiments respected the ethical standards for animal welfare. In particular, in the experiment on horses, collars were

fitted and removed from the animals in the presence of the owner, whilst the collaring of deer was performed during

routine captures for deer health monitoring by the Stelvio Park team (veterinary doctor and chief wildlife biologist, with

assistants) under Stelvio Park welfare regulations (official authorization: Autonomous Province of Trento: art. 36, law n.

24/1991 and successive Executive Regulation [art. 31‐33 n. 16‐69/1992]).

For both experiments, we measured the inter‐logger distances and compared these to the contact data re-

corded by theWildScope proximity loggers (Figure 1). Specifically, from a fixed observation point, we first measured

the distances A and B between the observer and focal dyads of loggers (pair of horses; deer and fixed logger) using

a rangefinder (Bushnell, Overland Park, KS, USA), and the associated bearings using a compass. We then computed

the inter‐logger distance D as:

D A B A B= + − (2 × × × cos ),2 2  (1)

where α denotes the angle between the segments A and B. We rounded D to the closest meter (i.e., spatial

resolution of the experiment equal to 1m) and bounded it to 70m, which was the maximum distance observable

within the limits of the fenced areas.

While taking these measurements, we recorded the timestamp of each observation at the temporal scale of one

minute, using a digital wristwatch synchronized with the logger internal clock. We considered as valid only those

minutes of observations where the focal dyads did not change their mutual position. We then matched the

timestamps of the empirical observations with those of the contacts detected by each logger.

For each experimental setting and observed D, we thus obtained a time series of observations at one‐minute

temporal scale, to which we associated an occurred (1) or missing (0) detection according to the data recorded by each

logger at any minute of observation. For each distance D, we then derived the contact success (CS) as the rate between

the minutes of detected contacts (DC) and the sum of minutes of detected and not detected (NDC) contacts:

CS
DC

DC NDC
=

+
(2)

Estimation of error components in contact detection

We modeled contact success as a function of the inter‐logger distance by means of generalized linear models with a

binomial distribution and logit link function, for mobile–mobile and mobile–fixed experiments separately. For the

former, we nested the inter‐logger distance within radio transmission power (3, 7, 11, and 15), and tested the

importance of fitting the observed dyads (i.e., dyad identification) as a random effect (Bolker et al. 2009). For each

experimental setting, we thus obtained the predicted probability P(x) of detecting an expected contact at any given

inter‐logger distance j (true positives; Figure 2; Table 1). For each distance j spanning from zero to the maximum
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range of transmission R, defined as the distance where P(x) = 10−5 (Figure 2), we also computed the precision of the

system Pr(x), which is the probability that a recorded contact occurs within the given distance j and not beyond

(Table 1). Specifically, at each distance j, we computed the precision as the ratio between the cumulative true

positives (expected and occurred contacts within the distance j) and all the cumulative detected contacts, including

true positives and false positives (i.e., contacts occurring beyond the distance j; Figure 2):

x
p x

p x
Pr( ) =

∑ ( )

∑ ( )

i
j

i
R
=0

=0

(3)

Next, we computed the false negative rate (FNR), which is the probability of missing a contact within j and the

complementary to 1 of the sensitivity (Table 1). We computed the false negative rate at each distance j as the ratio

between the cumulative false negatives (contacts expected but not occurred within j) and all the expected contacts

within j (false negatives + true positives; Figure 2):

x
p x

p x
FNR( ) =

∑ (1 − ( ))

∑ ( )

i
j

i
j

=0

=0

(4)

Finally, we computed the receiving operating characteristic (ROC) curves to evaluate the performance of the

empirical predictive models (Steyerberg et al. 2010).

RESULTS

We recorded 429 observations between horse dyads across the 4 tested radio transmission powers, and 68 ob-

servations between roe deer and the fixed logger. The monitoring time lasted overall 2,355minutes (1,719minutes for

mobile–mobile experiment; 636minutes for mobile–fixed experiment). The duration of the observations spanned from

F IGURE 2 The theoretical distribution of contact probability P(x) as a function of inter‐logger distance. For
distances shorter than W, the area under the curve indicates maximum connectivity (white zone). For distances
greater than R, no contacts are detected (black zone). For distances between W and R, the contact detection
probability varies (grey zone). Given a generic distance j of interest, the curve delimits 4 regions within the grey
zone: the cumulative probability of detecting an expected contact within distance j (i.e., the true positives [TP(j)]);
the cumulative probability of missing an expected contact within distance j (i.e., false negatives [FN(j)]); the
cumulative probability of detecting an unexpected contact beyond distance j (false positives [FP(j)]); and the
cumulative probability of missing an unexpected contact beyond distance j (true negatives [TN(j)])
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1minute in both experiments, to 47minutes for the mobile–mobile experiment and 85minutes for the mobile–fixed

experiment. In all experimental settings, the probability of contact detection decreased significantly with inter‐logger

distance, but not abruptly, as expected from the theoretical scenario (Table 2; Figures 2 and 3). Conversely, because

some contacts also occurred in the tail of the distribution, the probability of a contact being detected within distance j

(i.e., the precision) increased with inter‐logger distance until the maximum range value R (Figure 4). In the mobile–mobile

experiment on horses, the contact probability decreased more sharply for power 3, with almost no contacts beyond

15m (i.e., R = 15m), whereas for powers 7 and 11, contact probability decreased less abruptly, with R = 50m and R =

70m, respectively. For power 15, R could not be estimated because it exceeded the maximum observation distance

possible within the fenced area (70m). In the mobile‐fixed experiment on deer (power = 7), contact probability de-

creased more sharply than in the mobile–mobile experiment on horses with the same power (R = 25m). In the

mobile–mobile experiment, where multiple dyads could occur, we observed a non‐negligible variability between them,

as the random effect was always significant. We were interested in general predictions on contact detection probability,

but we provide the output for the population‐level average (Appendix A).

In all settings, even when 2 loggers were very close to each other (j = 0), contact probability was not 100%

(Table 2, Figure 3). Accordingly, because contacts could also be missed when loggers were very close, the intercept of

the false negative rate curve with the y‐axis was not zero (Table 2, Figure 5). For the mobile–mobile experiment on

horses, where loggers were set up with different radio transmission powers, the precision and false negative rates

were greater at the same inter‐logger distance for contact detection with lower powers (Figures 4 and 5). The

proximity loggers yielded a greater precision in the mobile–fixed experiment than in the mobile–mobile experiment

(power = 7) at all distances, and a lower false negative rate for distances <10m (Figures 4 and 5). The area under the

curve values of the ROC of all curves supported the high reliability of the predictive models that differed significantly

from the random model (Table 2), although power 15 performed poorly compared to the other settings.

DISCUSSION

We performed a calibration exercise on real animals in semi‐controlled environments to model the errors associated with

contact detection by proximity loggers, demonstrating their relevance for a robust assessment of encounters. We have

accounted for false negatives (existing but undetected contacts) in modeling the probability of contact detection. We

concluded that in animal deployments of proximity loggers, there is no certainty of detecting an occurring contact even

when the animals are very close to each other. Further, we modeled the occurrence of false negatives so that, at any inter‐

logger distance in a specific scenario, it would be possible to estimate the probability of a certain contact occurring and to

TABLE 2 Summary of empirical predictive models of contact detection as a function of inter‐ logger distance,
for all studied settings. We report the intercept (with SE) and the β coefficient estimate (with SE and P‐value
[Student's t test]) of the predicted curves and the number of observations they were based on (n). The area under
the curve (AUC) indicates the goodness of fit of the curves (for random curve: AUC = 0.5). One minus the intercept
provides the estimate of false negative rate at a distance of 0. We present the difference with random curve (DR)
and its significance (*P < 0.05; **P < 0.01; ***P < 0.001)

Setting Intercept ± SE β ± SE P n AUC DR

3, horses 0.78 ± 0.08 −0.44 ± 0.03 <0.01 207 0.88 2,418.5***

7, horses 0.77 ± 0.09 −0.11 ± 0.01 <0.01 106 0.86 987.6***

11, horses 0.76 ± 0.11 −0.07 ± 0.01 <0.01 60 0.82 332.6***

15, horses 0.72 ± 0.16 −0.02 ± 0.01 <0.01 54 0.62 18.9***

7, deer 0.90 ± 0.16 −0.26 ± 0.03 <0.01 68 0.92 581.8***

CALIBRATION OF PROXIMITY LOGGERS | 7 of 15



F IGURE 3 Predictive curve denoting contact detection probability as a function of inter‐logger distance, for all
experimental settings. We plotted the predictive plot referring to the population‐level average. The colored areas
around the curves represent the 95% confidence intervals. Black continuous line = power 3 for mobile–mobile
experiment on horses; red continuous line = power 7 for mobile–fixed experiment on deer; black short dashes =
power 7 for mobile–mobile experiment on horses; black medium dashes = power 11 for mobile–mobile experiment
on horses; long dashes = power 15 for mobile–mobile experiment on horses

F IGURE 4 Predictive curve of precision as a function of inter‐logger distance, for all experimental settings. The
curves are truncated at the maximum range of contact R. Black continuous line = power 3 for mobile–mobile
experiment on horses; red continuous line = power 7 for mobile–fixed experiment on deer; black short dashes =
power 7 for mobile–mobile experiment on horses; black medium dashes = power 11 for mobile–mobile experiment
on horses; long dashes = power 15 for mobile–mobile experiment on horses

8 of 15 | OSSI ET AL.



determine the percentage of missed contacts. Lastly, we systematically introduced the concept of false positives into

contact detection research, by defining the concept of maximum range distance, and modeling the precision of the

system. The users of proximity loggers should be aware that the association between a certain radio transmission power

and a determined inter‐logger detection distance, proposed earlier (Böhm et al. 2009, Drewe et al. 2012), is not realis-

tically applicable in proximity detection studies (Krull et al. 2019), especially in real settings. Relying on radio transmission

power as a proxy measurement of inter‐logger distance when using proximity loggers can lead to incorrect interpretation

of the output of these bio‐logging devices. Instead, detected contacts are empirical observations that are subject to device

measurement error and the ambient context of measurement (Rutz et al. 2015).

The occurrence of errors in contact detection is likely more evident when deploying the proximity loggers on animals

than when testing them in controlled scenarios where loggers are moved around by personnel (Ossi et al. 2016, Krull et al.

2019, Triguero‐Ocaña et al. 2019). Further, these errors are likely to vary among different observed dyads of proximity

loggers (Wilber et al. 2019), and accordingly the random effect of the observed dyad was significant for each tested power

setting in the mobile–mobile experiment on horses. With our innovative experimental protocol, we have been able to

account for such noise typically generated, among other environmental factors (Marfievici et al. 2013, Triguero‐Ocaña

et al. 2019), by body encumbrance (Krull et al. 2019) and fine‐scale movements of animals. For instance, 2 loggers attached

to animals within contact detection distance may unexpectedly interrupt radio transmission if the individuals move in a

back‐to‐back position, thus interposing their bodies between loggers. These behaviors may explain the missed contacts

observed for adjacent loggers, irrespective of radio transmission power. As such, the white zone with maximum con-

nectivity described in theoretical models of radio transmission (i.e., the area between zero and the distance W; Figure 2)

seems not to apply in real scenarios of contact detection due to environmental noise. The maximum range of contact

detection we calculated exceeds that reported in controlled in vitro scenarios (Picco et al. 2015, Ossi et al. 2016). Possibly,

this is another consequence of the environmental effects introduced by deploying the proximity loggers on animals, which

F IGURE 5 Predictive curve of false negative rate as a function of inter‐logger distance, for all experimental
settings. The curves are truncated at the maximum range of contact R. Black continuous line = power 3 for
mobile–mobile experiment on horses; red continuous line = power 7 for mobile–fixed experiment on deer; black
short dashes = power 7 for mobile–mobile experiment on horses; black medium dashes = power 11 for
mobile–mobile experiment on horses; long dashes = power 15 for mobile–mobile experiment on horses
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can lead to the recording of contacts beyond the desired detection distance threshold (i.e., the generation of false

positives). The combined effects of body encumbrance and fine‐scale movements possibly also explain the higher sen-

sitivity and precision in the mobile–fixed experiment on deer relative to the mobile–mobile experiment on horses at the

same radio transmission power. We speculate that these differences were due to a lower body mass of deer and a

proportionally reduced effect of fine‐scale movements in a mobile–fixed setting with respect to animal‐to‐animal en-

counters. Conversely, the greater maximum range of transmission R observed for the mobile–mobile experiment (50m;

i.e., double that of the mobile–fixed experiment when set at the same power), is possibly explained by a combination of

terrain topography and logger height from the ground, both of which differed between these experimental settings.

Indeed, the maximum range of connectivity increases with logger height from the ground (Ceriotti et al. 2010, Picco et al.

2015, Rutz et al. 2015), as is the case for relatively larger and taller animals (e.g., horses vs. deer). Further, the steep alpine

terrain where the experiment on deer was conducted might have contributed to reduced radio wave connectivity

(Anastasi et al. 2004), in contrast to the gentle hilly slopes characterizing the setting of the experiment that we ran on

horses.

Our results suggest that users should be aware of potential bias in the application of proximity loggers, as with any

bio‐logging device (Bettaney et al. 2015, Burns and van Loon 2015). The general principles of error structure in contact

detection presented in this work have a wide applicability, but the measurement of the parameters of contact detection

(e.g., the maximum range of contact detection R) are highly specific to a given experimental setting. We therefore

emphasize the need to adequately calibrate proximity loggers in conditions as similar as possible to those of their

intended deployment (e.g., by testing some units on captive individuals of the target species). We acknowledge that

sometimes this is not feasible because of the difficulty of finding a setting that allows the observation of dyadic

interactions among groups of individuals of the target species (as it was the case here for deer). In this case, we still

encourage the users of these tools to test the proximity loggers in a controlled scenario (e.g., on domestic animals) to

assess the probabilistic relationship between contact detection and inter‐logger distance. Then, if feasible, the users

could perform a targeted experiment on the focal species, even when settings are not optimal (e.g., on a very limited

sample size). For instance, in our mobile–fixed experiment on 2 individual deer, we limited the test to the radio

transmission power that, based on previous results from the mobile–mobile experiment on horses, was of major interest

for further ecological investigation. In our case, although we acknowledge the potential limitation of the results of the

mobile–fixed experiment, the overall comparable predicted pattern of contact detection between the 2 experimental

settings demonstrates the validity of this calibration protocol.

MANAGEMENT IMPLICATIONS

Our proposed experimental protocol provides practical and repeatable guidelines for choosing the settings of

proximity loggers matching the desired study objectives, with particular attention to the pattern of false positives

and negatives. To this end, we propose a decision tree to guide the user's choice (Figure 6). First, the user should

identify the desired distance of contact that better matches the ecological process under investigation. For ex-

ample, studies on direct disease transmission typically focus on short distance contacts (e.g., small values of R),

whereas social interactions such as territoriality or mate choice may rely on relatively large distances to define an

encounter. Based on this, the user should evaluate the trade‐off between the desired precision and sensitivity of

the system. If the user is mainly interested in not missing any contacts within a given distance (i.e., minimizing the

false negatives), they should set the proximity loggers to a power with maximum range R greater than the inter‐

logger distance of interest D. The user will accept, as a trade‐off, that a certain proportion of the observed contacts

will happen in a range between D and R (i.e., that the precision of its assessment will be suboptimal). Vice versa, the

user may decide to maximize the precision of the system to avoid the occurrence of false positives. In this case, the

user will set the system so that D is close to R, with the understanding that some contacts may be overlooked,

especially when occurring at relatively large distances (i.e., close to R).

10 of 15 | OSSI ET AL.



ACKNOWLEDGMENTS

We acknowledge the work of S. Nicoloso and M. Corrà in manufacturing WildScope. We thank C. Pucci and the

staff of Stelvio National Park who allowed us to test collars on their animals. The research was conducted with the

support of the Forestry and Wildlife Service of the Autonomous Province of Trento. This project was partly funded

by Autonomous Province of Trento (PAT), under grant BEARNET, protocol N. S044‐5/2012/226570. F. Ossi was

granted 3 yearly scholarships financed by the European Union (European Social Funds), Aosta Valley Autonomous

Region, and the Italian Ministry for Work and Social Politics.

DATA AVAILABILITY STATEMENT

Data will be made available upon reasonable request.

ORCID

Federico Ossi http://orcid.org/0000-0001-9004-9649

Stefano Focardi http://orcid.org/0000-0002-7792-3757

Bryony A. Tolhurst http://orcid.org/0000-0002-0198-5046

Gian Pietro Picco http://orcid.org/0000-0002-0411-1846

Amy L. Murphy http://orcid.org/0000-0002-0733-2978

Jean‐Michel Gaillard http://orcid.org/0000-0003-0174-8451

Francesca Cagnacci http://orcid.org/0000-0002-4954-9980

REFERENCES

Anastasi, G., A. Falchi, A. Passarella, M. Conti, and E. Gregori. 2004. Performance measurements of motes sensor networks.
Proceedings of the ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile
Systems 7:174–181.

F IGURE 6 Decision tree to guide the user on optimal setting choice for proximity loggers. Black boxes denote
the actions that the user may undertake, while the red boxes indicate consequences of such actions. In the decision
tree, D denotes the desired contact detection distance, R indicates the maximum range of detection distance, and
FN defines the false negatives

CALIBRATION OF PROXIMITY LOGGERS | 11 of 15

http://orcid.org/0000-0001-9004-9649
http://orcid.org/0000-0002-7792-3757
http://orcid.org/0000-0002-0198-5046
http://orcid.org/0000-0002-0411-1846
http://orcid.org/0000-0002-0733-2978
http://orcid.org/0000-0003-0174-8451
http://orcid.org/0000-0002-4954-9980


Bettaney, E. M., R. James, J. J. H. St Clair, and C. Rutz. 2015. Processing and visualising association data from animal‐borne
proximity loggers. Animal Biotelemetry 3:1–11.

Böhm, M., M. R. Hutchings, and P. C. White. 2009. Contact networks in a wildlife‐livestock host community: identifying
high‐risk individuals in the transmission of bovine TB among badgers and cattle. PLoS ONE 4:e5016.

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J. S. S. White. 2009. Generalized
linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24:127–135.

Bombara, C. B., S. Dürr, G. E. Machovsky‐Capuska, P. W. Jones, and M. P. Ward. 2017. A preliminary study to estimate
contact rates between free‐roaming domestic dogs using novel miniature cameras. PloS ONE 12:e0181859.

Boyland, N. K., R. James, D. T. Mlynski, J. R. Madden, and D. P. Croft. 2013. Spatial proximity loggers for recording animal social

networks: consequences of inter‐logger variation in performance. Behavioural Ecology and Sociobiology 67:1877–1890.
Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information‐theoretic

approach. Springer, New York, New York, USA.
Burns, Z. T., and E. E. van Loon. 2015. A framework to classify error in animal‐borne technologies. Frontiers in Ecology and

Evolution 3:55.

Chamaillé‐Jammes, S., A. Charbonnel, S. Dray, and H. Fritz 2016. Spatial distribution of a large herbivore community at
waterholes: an assessment of its stability over years in Hwange National Park, Zimbabwe. PLoS ONE 11:e0153639.

Ceriotti, M., M. Chini, A. L. Murphy, G. P. Picco, F. Cagnacci, and B. A. Tolhurst. 2010. Motes in the jungle: lessons learned
from a short‐term WSN deployment in the Ecuador cloud forest. Pages 25–36 in P. J. Marron, T. Voigt, P. Corke, and

L. Mottola, editors. Real‐world wireless sensor networks. Springer, Berlin, Germany.
Cross, P. C., T. G. Creech, M. R. Ebinger, D. M. Heisey, K. M. Irvine, and S. Creel. 2012. Wildlife contact analysis: emerging

methods, questions, and challenges. Behavioural Ecology and Sociobiology 78:1437–1447.
Drewe, J. A., N. Weber, S. P. Carter, S. Bearhop, X. A. Harrison, S. R. Dall, R. A. McDonald, and R. J. Delahay. 2012.

Performance of proximity loggers in recording intra‐and inter‐species interactions: a laboratory and field‐based
validation study. PLoS ONE 7:e39068.

Farine, D. R., and H. Whitehead. 2015. Constructing, conducting and interpreting animal social network analysis. Journal of
Animal Ecology 84:1144–1163.

Hayward, M. W., and M. D. Hayward. 2012. Waterhole use by African fauna. South Africa Journal of Wildlife Research 42:
117–127.

Ji, W., P. C. White, and M. N. Clout. 2005. Contact rates between possums revealed by proximity data loggers. Journal of
Applied Ecology 42:595–604.

Kays, R., M. C. Crofoot, W. Jetz, and M. Wikelski. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348:
aaa2478.

Krause, J., S. Krause, R. Arlinghaus, I. Psorakis, S. Roberts, and. C. Rutz. 2013. Reality mining of animal social systems.

Trends in Ecology and Evolution 28:541–551.
Krull, C. R., L. F. McMillan, R. M. Fewster, R. van der Ree, R. Pech, T. Dennis, and M. C. Stanley. 2019. Testing the feasibility

of wireless sensor networks and the use of radio signal strength indicator to track the movements of wild animals.
Wildlife Research 45:659–667.

Lavelle, M. J., J. W. Fischer, G. E. Phillips, A. M. Hildreth, T. A. Campbell, D. G. Hewitt, S. E. Hygnstrom, and K. C. Vercauteren. 2014.
Assessing risk of disease transmission: direct implications for an indirect science. BioScience 64:524–530.

Lavelle, M. J., S. L. Kay, K. M. Pepin, D. A. Grear, H. Campa III, and K. C. VerCauteren. 2016. Evaluating wildlife‐cattle
contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA.
Preventive Veterinary Medicine 135:28–36.

Long, J. A., S. L. Webb, T. A. Nelson, and K. L. Gee. 2015. Mapping areas of spatial‐temporal overlap from wildlife tracking
data. Movement Ecology 3:1–14.

López‐Olvera, J. R., I. Marco, J. Montané, E. Casas‐Díaz, G. Mentaberre, and S. Lavín. 2009. Comparative evaluation of
effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois
(Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). European Journal of Wildlife Research 55:193–202.

Marfievici, R., A. L. Murphy, G. P. Picco, F. Ossi, and F. Cagnacci. 2013. Are those trees messing with my wireless sensor
network? Proceedings of the ACM Conference on Embedded Networked Sensor Systems 11:1–2.

Mennill, D. J., S. M. Doucet, K. A. A. Ward, D. F. Maynard, B. Otis, and J. M. Burt. 2012. A novel digital telemetry system for
tracking wild animals: a field test for studying mate choice in a lekking tropical bird. Methods in Ecology and Evolution 3:
663–672.

Ossi, F., S. Focardi, G. P. Picco, A. L. Murphy, D. Molteni, B. Tolhurst, N. Giannini, J‐M Gaillard, and F. Cagnacci. 2016.
Understanding and geo‐referencing animal contacts: proximity sensor networks integrated with GPS‐based telemetry.
Animal Biotelemetry 4:21.

Ossi, F., J.‐M. Gaillard, M. Hebblewhite, N. Morellet, N. Ranc, R. Sandfort, M. Kroeschel, P. Kjellander, A. Mysterud,

J. D. C. Linnell, et al. 2017. Plastic response by a small cervid to supplemental feeding in winter across a wide
environmental gradient. Ecosphere 8:e01629.

12 of 15 | OSSI ET AL.



Pepin, K. M., A. J. Davis, J. Beasley, R. Boughton, T. Campbell, S. M. Cooper, W. Gaston, S. Hartley, J. C. Kilgo, S. M. Wisely,
C. Wyckoff, and K. C. VerCauteren. 2016. Contact heterogeneities in feral swine: implications for disease
management and future research. Ecosphere 7:e01230.

Picco, G. P., D. Molteni, A. L. Murphy, F. Ossi, F. Cagnacci, M. Corrà, and S. Nicoloso. 2015. Geo‐referenced proximity
detection of wildlife with WildScope: design and characterization. Proceedings of the International Conference on

Information Processing in Sensor Networks 14:238–249.
Potapov A., E. Merrill, M. Pybus, D. Coltman, and M. A. Lewis 2013. Chronic wasting disease: on possible transmission

mechanisms in deer. Ecological Modelling 250:244–257.
Rutz, C., Z. T. Burns, R. James, S. M. H. Ismar, J. Burt, B. Otis, J. Bowen, and J. J. H. St Clair. 2012. Automated mapping of

social networks in wild birds. Current Biology 22:669–671.
Rutz, C., M. B. Morrissey, Z. T. Burns, J. Burt, B. Otis, J. J. St Clair, and R. James. 2015. Calibrating animal‐borne proximity

loggers. Methods in Ecology and Evolution 6:656–667.
Steyerberg, E. W., A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski., M. J. Pencina, and M.W. Kattan. 2010. Assessing

the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21:128.

Tambling, C. J., and L. E. Belton. 2009. Feasibility of using proximity tags to locate female lion Panthera leo kills. Wildlife
Biology 15:435–441.

Triguero‐Ocaña, R., J. Vicente, and P. Acevedo. 2019. Performance of proximity loggers under controlled field conditions:
an assessment from a wildlife ecological and epidemiological perspective. Animal Biotelemetry 7:1–9.

Whitford, M., and A. P. Klimley 2019. An overview of behavioral, physiological, and environmental sensors used in animal

biotelemetry and biologging studies. Animal Biotelemetry 7:1–24.
Wilber, M. Q., K.M. Pepin, H. Campa III, S. E. Hygnstrom, M. J. Lavelle, T. Xifara, K. C. VerCauteren, and C. T. Webb. 2019.

Modelling multi‐species and multi‐mode contact networks: implications for persistence of bovine tuberculosis at the
wildlife–livestock interface. Journal of Applied Ecology 56:1471–1481.

Williams, H. J., L. A. Taylor, S. Benhamou, A. I. Bijleveld, T. A. Clay, S. de Grissac, U. Demšar, H. M. English, N. Franconi,

A. Gómez‐Laich, et al. 2020. Optimizing the use of biologgers for movement ecology research. Journal of Animal
Ecology 89:186–206.

Zuniga, M., and B. Krishnamachari. 2007. An analysis of unreliability and asymmetry in low‐power wireless links. ACM
Transactions on Sensor Networks 3:article 7.

Associate Editor: Philip McLoughlin.

How to cite this article: Ossi, F., S. Focardi, B. A. Tolhurst, G. P. Picco, A. L. Murphy, D. Molteni, N. Giannini,

J.‐M. Gaillard, and F. Cagnacci. 2022. Quantifying the errors in animal contacts recorded by proximity

loggers. Journal of Wildlife Management 86:e22151. https://doi.org/10.1002/jwmg.22151

APPENDIX A: COMPARISON OF THE MODELS WITH AND WITHOUT A RANDOM EFFECT

We tested the importance of fitting a random effect of the observed dyad solely in the mobile–mobile experiment on

horses because in the mobile–fixed experiment on deer the number of observed dyads was too limited to permit the

estimate of any effect in the model. For the mobile–mobile experiment on horses, we fitted the same fixed‐effect model

with and without a random effect (dyad identification) to assess the relevance of this component in the model through a

comparison based on Akaike's Information Criterion scores corrected for small sample size (AICc; Burnham and Anderson

2002). For each power, the model with the random effect had a lower AICc score than the model without the random

effect (Table A1). The empirical predictive plot denoting the relationship between contact detection probability and inter‐

logger distance evidenced rather wide confidence intervals, for each radio transmission power (Figure A1), probably

because of the relatively small number of dyads. For the purpose of generality, we illustrated the predictions for the

population‐level average because the predictor's effect size did not change with respect to the random model (Table A2).
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TABLE A1 Comparison based on Akaike's Information Criterion scores corrected for small sample size (AICc)
scores of the models with or without a random effect (dyad identification), for the 4 different power settings of the
mobile–mobile experiment on horses

Power AICc with random effect AICc without random effect

3 773.285 803.936

7 454.883 516.309

11 367.363 379.669

15 420.392 478.653

F IGURE A1 Plot denoting the relationship between contact detection probability and inter‐logger distance for
all the experimental settings on the mobile–mobile experiment on horses, for the models with a random effect. The
colored areas around the curves represent the 95% confidence interval. Continuous line = power 3; short
dashes = power 7; medium dashes = power 11; long dashes = power 15
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TABLE A2 Comparison of the model summary with and without a random effect (dyad identification) for the
mobile–mobile experiment on horses, on each tested power setting. For each power, we report the predicted β
coefficient estimate with standard error and significance at the 95% level of the Student's t test (*P < 0.05;
**P < 0.01; ***P < 0.001)

Random model Not random model

Power β ± SE β ± SE

3 −0.40 ± 0.03*** −0.44 ± 0.03***

7 −0.09 ± 0.01*** −0.11 ± 0.01***

11 −0.08 ± 0.01*** −0.07 ± 0.01***

15 −0.03 ± 0.01*** −0.02 ± 0.01***
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