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Abstract: Plant-associated microbes can shape plant phenotype, performance, and productivity.
Cultivation methods can influence the plant microbiome structure and differences observed in the
nutritional quality of differently grown fruits might be due to variations in the microbiome taxonomic
and functional composition. Here, the influence of organic and integrated pest management (IPM)
cultivation on quality, aroma and microbiome of raspberry (Rubus idaeus L.) fruits was evaluated.
Differences in the fruit microbiome of organic and IPM raspberry were examined by next-generation
sequencing and bacterial isolates characterization to highlight the potential contribution of the
resident-microflora to fruit characteristics and aroma. The cultivation method strongly influenced
fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. Organic cultivation resulted in
smaller fruits with a higher anthocyanidins content and lower titratable acidity content in comparison
to IPM berries. Management practices also influenced the amounts of acids, ketones, aldehydes
and monoterpenes, emitted by fruits. Our results suggest that the effects on fruit quality could be
related to differences in the population of Gluconobacter, Sphingomonas, Rosenbergiella, Brevibacillus and
Methylobacterium on fruit. Finally, changes in fruit aroma can be partly explained by volatile organic
compounds (VOCs) emitted by key bacterial genera characterizing organic and IPM raspberry fruits.

Keywords: Rubus idaeus L.; VOCs; microbiome; volatilome; Gluconobacter; anthocyanins

1. Introduction

Raspberry (Rubus idaeus L.) is a highly valuable crop with a large agricultural potential,
both in Europe and worldwide. Raspberry consumer demand, as well as its cultivation,
have been steadily increasing in the past 20 years, with a further acceleration since 2010 [1].
Russia is the top producing country, with a production volume of 165,800 tonnes accounting
approx. for 20% of the world production [1]. Raspberry is also widely cultivated in other
European (Serbia, Poland) and north-American (Mexico, USA) countries [1,2].

Hedonic characteristics and nutraceutical properties of raspberry are the main drivers
of consumer appreciation. In fact, raspberry is rich in health-beneficial compounds, such as
flavonols, catechins, ascorbic acid and ellagic acid derivatives [3,4]. Additionally, more than
300 volatile organic compounds (VOCs) have been reported as constituents of raspberry
aroma [5], including alcohols, aldehydes, ketones, esters and terpenoids [6,7]. Among
the main aroma-active compounds (i.e., those with low perception threshold compared to
emission rates), C6 aldehydes (hexanal, hexenal isomers) and norisoprenoids (e.g., ionones)
are responsible for grassy and floral notes of raspberry fruit aroma [8].
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The organic farming system consists of a low-input crop management (EC regu-
lation No. 834/2007) excluding synthetic pesticides and fertilizers for plant protection
and nutrition [9]. In the last decade, organic food gained in popularity and the global
market for certified organic products underwent a remarkable increase in sales (+72%
2009–2014) [10]. Berry fruits have followed this trend, with a rise in the organic produc-
tion from around 30 tonnes in 2012 to 70 tonnes in 2018 [11]. However, the fulfilment of
the increasing demand of organic raspberries faces several obstacles mining the growers
profitability [12]. High costs are linked to the conversion of farms from integrated pest
management (IPM) to the organic system and to obtaining of certifications, which are
necessary for organic labelling, highly valued by consumers [2]. Additionally, organic
raspberry farming has been found to be characterized by lower yields [12,13]. Furthermore,
raspberry cultivation is affected by several pests and pathogens, including the insects Res-
seliella theobaldi (Diptera, Cecidomyiidae), Lasioptera rubi (Diptera, Cecidomyiidae), Anthono-
mus rubi (Coleoptera, Curculionidae), Aphis idaei (Hemiptera, Aphididae) and Drosophila
suzukii (Diptera, Drosophilidae), the mite Tetranychus urticae (Acarina, Tetranychidae), the
oomycete Phytophtora fragariae var. rubi, and the fungi Leptosphaeria coniothyrium, Didymella
applanata, Botrytis cinerea and Sphaerotheca macularis [14]. Such pests and pathogens can
compromise plant survival and/or fruit quality in the absence of adequate control mea-
sures [15,16]. In organic systems, control inputs, besides being characterized by high prices,
are few and specialized literature regarding appropriate control methods is lacking [12].
On the other hand, growers profitability for organic food products is generally higher than
IPM ones [12] due to the application of premium prices consumers are willing to pay [17].
Indeed, in developed countries, organic food is considered safer and healthier [18,19], as
well as better for the climate and the environment [20] when compared to IPM grown one.
Several studies observed higher contents of polyphenols, vitamins, carotenoids and ellagic
acid, as well as fruit dry matter, sucrose, malic acid and minerals, in organic berries [21].
However, other studies came to contrasting conclusions in establishing causalities between
improved nutritional properties and organic cultivation system which might be due to the
numerous variables interacting with the final fruit quality.

Plants are known to host a great diversity of microbes, whose composition and
functionalities can shape plant phenotype, performances and productivity [22,23]. The
increasing access to genomic data has allowed a more in-depth investigation of the mi-
crobial communities (microbiomes) associated to the plant [24] and of their interaction
with the host, pointing to a role of crop-associated microbes in agricultural performance
and crop quality [25,26]. Although in the last few years several studies focused either
on the microbial diversity present on various fruit species [27] or on the impact of root
or foliar microbial applications on nutrient, flavonoid, organic acid contents and volatile
compounds levels of fruits [28], a deep understanding of the influence of native fruit
epiphytic microbiomes on fruit quality and on fruit volatilome building is still lacking.

Cultivation methods can influence the composition and structure of the plant micro-
biome [29] and differences observed in the nutritional quality of differently grown fruit [30]
might be due to variations in the microbiome structure. Although dynamics of the soil
microbiota under different cultivation methods have been extensively investigated [31–33],
only a few studies focus on the influence of cultivation practices on fruit microbiomes [29].
Thus, the aim of this work was to comprehensively dissect the effect of organic or IPM
cultivation on fruit microbiome, fruit quality characteristics and aroma. Contextually,
differences of organic and IPM raspberry fruit-associated microbiomes were examined
by next-generation sequencing (NGS) and bacterial isolates characterization in order to
highlight the potential contribution of the resident microflora to fruit quality and aroma.

2. Materials and Methods
2.1. Plant Material and Cultivation Method

Raspberry fruit of the primocane ‘Enrosadira’ were harvested at the end of Septem-
ber 2019 in two different farms both located in the Cesena area (Emilia-Romagna region,
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Italy). The organic orchard was cultivated according to European Union (EU) regulation
EC 889/2008. An IPM orchard was cultivated according to Agrointesa guidelines which
comply with the national regulations (Legislative Decree 50/2012). In the latter orchard,
IPM Epik®, Karate Zeon®, Laser® and Signum® were applied for the control of pests and
fungal pathogens, using dose and application methods as suggested by the producers.
The organic farm did not apply any kind of fertilization, whereas in IPM orchard, plants
were fertigated weekly from April to September according to standard practices: calcium
nitrate (125 kg/ha), magnesium nitrate (600 kg/ha), ammonium nitrate (100 kg/ha), potas-
sium nitrate (250 kg/ha), potassium phosphate (200 kg/ha), monopotassium phosphate
(300 kg/ha), nitric acid (52%, 1000 L/ha), iron (25 kg/ha) and microelements (15 kg/ha) in
variable percentages depending on the phenological state.

To assess fruit quality, aroma and microbiome, fruits were randomly harvested at full
ripe stage (i.e., when fruits were easily detached from the receptacle), put in cold boxes and
immediately brought to the laboratory. Fruit volatiles and NGS analysis were performed on
the same batch of fruits, consisting in three replicates each constituted by a pool of six fruits.
The material was kept together for 24 h and subsequently halved for analysis processing.

2.2. DNA Extraction and Next-Generation Sequencing for Microbiome Analysis

To perform metagenomic analysis, three biological repetitions, consisting in a pool of
three raspberry fruits, were washed in 20 mL MgSO4 10 mM for 5 min under gentle agitation
(70 rpm). Washing suspensions were frozen and stored at −80 ◦C. DNA was extracted ac-
cording to the CTAB protocol [34], using the pellet obtained from centrifuging the washing
solutions at 13,000× g for 10 min. DNA quality and quantity were measured by spectropho-
tometric quantification with a NanoDrop ND-8000 V1.1.1 spectrophotometer (Thermo
Fisher Scientific, Dreieich, Germany). Bacterial V3-V4 regions were amplified with 16S
Amplicon polymerase chain reaction (PCR) Forward = 5_TCGTCGGCAGCGTCAGATGT-
GTATAAGAGACAGCCTACGGGNGGCWGCAG and Reverse = 5_GTCTCGTGGGCTCG-
GAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC primers according to
Illumina protocols and subjected to automated sequencing by BioFab research (Rome, Italy).

2.3. Bioinformatic Analysis

BBMap version 38.79 was used to remove low-quality reads using a quality-trim
left and right ends before mapping with an average phred score ≥ 25 [35]. Sequences
shorter than 170 bases were discarded. The sequences were analysed using the Qiime2 v.
2020.2.0 [36]. Qiime2 dada2 plugin was used to length trimming, denoising, chimera and
PhiX removal. SILVA 16S rRNA sequences database, release 312 [37], with a 97% identity
criterion was used to assign taxonomy to features. Taxonomic composition of organic
and IPM raspberry fruit microbiomes was visualized by means of Krona chart created
using Krona web application (https://github.com/marbl/Krona/wiki, accessed on 20
January 2021).

2.4. Cultural Dependent Characterization of Fruit Microbiome

Raspberry fruit washing obtained as above were serially diluted and plated on Luria-
Bertani agar medium (Sigma Aldrich, St. Louis, MO, USA) amended with cycloheximide
(100 µg/mL) to prevent fungal growth. Plates were incubated at 27 ◦C for 24 h. Colonies
were randomly collected from the plates at the highest dilution. Isolates were stored
at −80 ◦C in LB broth supplemented with 20% glycerol (v/v). DNA was isolated from
bacterial isolates using GenElute Bacterial Genomic DNA kit (Sigma Aldrich, St. Louis, MO,
USA), following manufacturer’s instructions. Genomic DNA patterns obtained by REP-
PCR (Repetitive Element Palindromic PCR) and performed using primer BOXA1R [38], as
described in [39], were visualized on a polyacrylamide gel [40].

Bacterial isolates were identified by 16s rRNA sequencing as follows: 16s rRNA gene
extraction was amplified using Lac16S-for (5′-AATGAGAGTTTGATCCTGGCT-3′) and
Lac16Srev (5′-GAGGTGATCCAGCCGCAGGTT-3′) primers, as described in [41]. The

https://github.com/marbl/Krona/wiki
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amplification product was delivered to Biofab Research Srl for sequencing. Sequences were
compared with those available in http://www.ncbi.nml.nih.gov/BLAST, accessed on 15
January 2021.

Bacterial isolates were screened for several functional traits, according to the follow-
ing protocols: indole-3-acetic-acid production—[42]; acetoin production—[43]; ammo-
nia production—[44]; siderophores production—[45]; 1-aminocyclopropane-1-carboxylate
(ACC) deaminase activity assay—[46].

2.5. Assessment of Fruit Quality Parameters

To measure soluble solids content (SSC) and fruit titratable acidity (TA), fruit juice
was obtained homogenising berries and sieving them through a cloth. SSC of fruits was
determined by digital refractometer (Atago-PAL1, Tokyo, Japan) and expressed as ◦Brix.
Titratable acidity was determined manually by adding 0.1 M NaOH dropwise until reaching
the titration end-point. Analyses were performed on nine replicates consisting of the juice
from a pool of three berries each. Prior to homogenisation, fruit colour was determined
using a CR-400 Chroma meter Colorimeter (Konica Minolta, Tokyo, Japan) on each berry.
Three measurements were performed on the same fruit.

To determine the anthocyanins content, 3 g of homogenized fruit were suspended in
25 mL of methanol and incubated 24 h at room temperature. Samples were then centrifuged
for 5 min at 4000× g and the supernatant was stored at −20 ◦C. Anthocyanin content was
determined on the supernatant by using high-performance liquid chromatography (HPLC,
Waters 1525, Waters, Milford, MA) at 520 nm according to [47].

Quantification was performed with the external standard method with the standards
calibration curves (different concentrations were used to build the curve: 1–100 µg mL−1).
Malvidin-3-glucoside chloride (Sigma Aldrich, St. Louis, MO, USA) was used as standard.
The reliability of the quantification method was assessed by the R2 value of the standard and
assessing that the concentration of each quantified compound was within the concentration
range of the standard. Anthocyanin identification was performed according to [48].

2.6. Fruit Volatile Analysis

Raspberry fruit volatiles were analysed by gas chromatography–mass spectrome-
try (GC–MS). Each replicate (n = 3) consisted of a pool of three berries. Berries were
put in a glass vial, closed with a lid equipped with a pierceable silicon cap and stored
at −80 ◦C. Samples were taken out from −80 ◦C and put at −20 ◦C for 20 min before
equilibration. After adding 1-octanol 0.05% (v/v in H2O) as internal standard, equili-
bration was performed for 20 min at 40 ◦C. Samples were then exposed to a 50/30-µm
divinylbenzene/carboxen/polydimethyl siloxane (DVB Carboxen PDMS) Stable Flex 2 cm
solid phase microextraction (SPME) fibre (Supelco, Bellefonte, PA, USA) for 40-min ex-
posure. Afterwards, the SPME fibre was desorbed in a Shimadzu GC-MS-QP2010 Plus
(Shimadzu, Tokyo, Japan) at 250 ◦C for 10 min in the split mode. The chromatographic
separation of volatile compounds was performed on an RTX-WAX fused-silica capillary
column (30 m × 0.25 mm i.d. × 0.25 µm) coated with polyethylene glycol (PEG) (Restek,
Bellefonte, PA, USA). A three-step heating oven program was set: (1) 45 ◦C, 10 min;
(2) 4 ◦C min−1 temperature increase to 200 ◦C; (3) 200 ◦C, 8 min. Helium was used as
the carrier gas at a constant flow rate of 1 mL/min. A mass range from 33 to 400 m/z
was scanned at a rate of 769 amu s−1. Mass spectra and linear retention indices (calcu-
lated according to the retention times of linear C8–C20 standard alkanes) were used for
the identification of volatile compounds, based on the NIST/EPA/NIH Mass Spectral
Database (NIST 08, National Institute of Standards and Technology, Gaithersburg, MD,
USA) and the ChemSpider information resource (http://www.chemspider.com, accessed
on October 2020).

http://www.ncbi.nml.nih.gov/BLAST
http://www.chemspider.com
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2.7. Bacterial Volatile Analysis by Proton-Transfer Reaction−Mass Spectrometry (PTR–MS) and
in Silico Fruit Volatilome Assembly

10 mL commercial raspberry juice (Bocon, Italy) diluted with distilled water to 75%,
adjusted to pH 7, were inoculated with 100 µL of freshly grown bacterial culture and
incubated for 24 h. The experimental set foresaw three replicates for each bacterial isolate.
Headspace volatiles were measured as described in [49] by using a proton-transfer reaction
time of flight–mass spectrometer (PTR-ToF–MS) 8000 (Ionicon Analytik GmbH, Innsbruck,
Austria). The drift tube conditions were as follows: 110 ◦C drift tube temperature, 2.8 mbar
drift pressure, 428 V drift voltage, ion funnel (18 V). This leads to an E/N ratio of about 130
Townsend (Td), with E corresponding to the electric field strength and N to the gas number
density (1 Td = 10−17 Vcm−2). The sampling time per channel of ToF acquisition was 0.1 ns,
amounting to 350,000 channels for a mass spectrum ranging up to m/z = 400. The sample
headspace was withdrawn through PTR-MS inlet with 40 sccm flow for 60 cycles resulting
in an analysis time of 60 s/sample. Pure nitrogen was flushed continuously through
the vial to prevent pressure drop. Each measurement was conducted automatically after
25 min of sample incubation at 40 ◦C and 5 min between each measurement was applied
in order to prevent memory effect. All steps of measurements were automated by an
adapted GC autosampler (MPS Multipurpose Sampler, GERSTEL) coupled to PTR-ToF–MS.
The analysis of PTR-ToF–MS spectra proceeded as described in [49]. The array of masses
detected with PTR-ToF–MS was reduced by applying noise and correlation coefficient
thresholds. The first removed peaks that were not significantly different from blank
samples; the latter excluded peaks with over 99% correlation, which mostly correspond
to isotopes of monoisotopic masses. PTR-ToF–MS outputs of the isolates were employed
to build the in silico fruit volatilome. Each virtual fruit sample was obtained by the sum
of m/z emissions of the corresponding isolates, weighted for their NGS genus relative
abundance. Multiple isolates belonging to the same genus were averaged before weighting
m/z profiles assembled in this way were visualized by principal component analysis
(PCA).

2.8. Statistical Analysis

Past software (Version 4.0) [50] was used for basic statistical functions and correlation
canonical analysis. Student’s t-test was computed to investigate whether single VOCs,
VOCs classes and quality parameters of organic and IPM managed samples were signif-
icantly different. The significance level of all analysis was p < 0.05. R (Version 1.1.463),
together with the external package “mixOmics” [51], was used for PCA analysis and
visualization employed in this work.

3. Results
3.1. Characterization of Raspberry Culture Dependent and Independent Bacteriome

The composition of bacterial communities of raspberry fruit cultivated with organic
or IPM strategies were assessed by NGS analysis of 16S rRNA gene. Sufficient sequencing
effort was assessed (Figure S1). Community composition at the phylum level differed
according to the cultivation method. Although both organic and IPM fruits were dominated
by Bacilli and Alpha-proteobacteria, these phyla represented respectively 33% and 20% of
total operational taxonomic units (OTUs) in IPM fruit, and 76 and 15% of total OTUs in
organic fruits (Figure 1). Moreover, IPM fruits showed a higher bacterial biodiversity than
organic ones (Shannon Index, H’ = 3.6 and 2, respectively) and also higher taxa evenness
(J’ = 0.64 and 0.4, respectively; Table S1). The bacteriome of organic fruit was dominated
by Gluconobacter spp. (73%), whereas IPM raspberries were colonized by several different
taxa (Brevibacillus 14%, Methylobacterium 4%) (Figure 1). Gluconobacter spp. were absent in
IPM fruits.
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genus level for (a) integrated pest management (IPM) and (b) organic raspberry fruits ‘Enrosadira’.

To visualize differences among the bacterial microbiomes of the two cultivation meth-
ods, PCA was performed according to bacterial families (Figure 2a). Organic produced
fruit had more even composition of the bacterial community with berries discriminated
only by PC2 (13% of the total variance). Despite the high uniformity of organic fruit, the
analysis also highlighted that the differences in bacterial families between berries produced
with organic and IPM practices provided only a partial discrimination of berries. Ace-
tobacteraceae and Enterobacteriaceae were the first two families presenting the highest
loading values for PC1 (85% of the expected variance) and thus mainly responsible for fruit
discrimination (Figure 2b).

The total culturable bacterial population, expressed in log (colony-forming units
(CFU)/fruit g), was higher in organic (6.1 ± 0.7) than IPM (5.6 ± 0.1). The analysis of
culturable bacterial population indicated that IPM and organic fruit differentiated by
few genera. Rosenbergiella was present only in IPM fruit, whereas Tatumella, Klebsiella
and Cronobacter genera were found only in organic one (Table 1). IPM and organic unique
bacterial isolates were screened for their in vitro plant growth promoting activities (Table 2).
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Indole-3-acetic-acid (IAA) producing bacteria, namely Pantoea agglomerans str. 2 and
Tatumella terrea, were isolated only in organic fruit, whereas the sole acetoin-producing
bacterium, Enterobacter spp. str. 2, was found on IPM fruit. All the isolates from organic
fruit, but only one from IPM fruit, could release ammonia. Concerning siderophore
production, Klebsiella oxytoca and Enterobacter spp. (str. 1 and 2) were the only species
excreting this activity in organic and IPM fruit, respectively. Finally, none of the isolated
strains neither in organic, nor IPM berries presented an ACC deaminase activity.
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Table 1. Bacterial genera and species isolated from raspberry fruits ‘Enrosadira’ cultivated with
organic or IPM practices.

Fruit Type Bacterial Isolate

Both IPM and Organic

Bacillus subtilis,
Burkholderia spp.,
Cellulomonas spp.,

Enterobacter asburiae,
Enterobacter spp.—strain 1,

Erwinia aphidicola,
Erwinia rhapontici,
Erwinia toletana,

Lactobacillus plantarum,
Methylobacterium extorquens,
Ochrobactrum intermedium,

Ochrobactrum pseudogrignonense,
Paenibacillus alvei,

Paenibacillus macerans,
Paenibacillus polymixa,

Pantoea agglomerans.—strain 1,
Pantoea ananatis,

Pantoea rwadensis,
Pseudomonas fluorescens—strain 1,
Pseudomonas fluorescens—strain 2,

Pseudomonas stutzeri,
Sphingomonas camponoticapitis,

Sphingomonas paucimobilis,

IPM Rosenbergiella spp.
Enterobacter spp—strain 2 and 3

Organic

Pantoea agglomerans—strain 2
Tatumella punctata

Tatumella terrea
Cronobacter spp.
Klebsiella oxytoca
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Table 2. Functional traits of bacteria strains isolated uniquely in organic or IPM berries.

Cultivation
Method Bacterium IAA Production Acetoin

Production
NH4

+

Production
Siderphores
Production

ACC Deaminase
Activity

IPM

Rosenbergiella spp. − − − − −

Enterobacter strain 2 − + − + −

Enterobacter strain 3 − − + + −

ORG

Pantoea agglomerans strain 2 ++ − + − −

Cronobacter spp. − − + − −

Klebsiella oxytoca − − + + −

Tatumella punctata − − + − −

Tatumella terrea ++ − + − −
Qualitative rating of compound production/activity: − = not detected, + = detectable, ++ = high.

3.2. Fruit Quality Characteristics

Concerning sensorial quality traits, soluble solid content (expressed as ◦Brix) did
not differ with respect to the cultivation method, whereas weight and titratable acidity
(TA) were significantly lower in organically grown fruit (Figure 3a). Anthocyanins are
the main compounds responsible for berry colour. Cyanidin-3-sophoroside was the most
abundant anthocyanin in raspberry fruit, followed by cyanidin-3-glucoside (Figure 3b).
Organic raspberries showed significantly higher concentration of all anthocyanins with
the exception of cyanidin-3-glucorutinoside. The higher concentration of anthocyanins
partially influenced berry colour, despite no significant differences were observed in any of
the CIE coordinates (L × C × h). Canonical correlation analysis (CCA) was performed to
investigate possible correlations between the bacterial genera harboured on fruit and the
quality parameters (Figure 4). Gluconobacter positively correlated with total anthocyanin
content, Methylobacterium and Sphingomonas with titratable acidity, whereas Brevibacillus
and Rosenbergiella genera with soluble solid content.
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3.3. Characterization of the Volatilome of Organic and Integrated Pest Management (IPM)
Raspberry Fruits

The GC–MS raspberry volatile profile revealed 32 and 37 VOCs released by organic
and IPM fruits, respectively. Single VOCs were grouped according to their chemical
characteristics in the following classes: alkanes, acids, mono- and sesquiterpenes, esters,
ketones, alcohols and aldehydes (Figure 5; Table 3).
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Table 3. Volatile organic compounds emitted by raspberry fruit ‘Enrosadira’ cultivated with organic (Org) or integrated
(IPM) practices. Data are reported as mean ± SE. Values labelled with different letters indicates significant differences
between the cultivation methods according to Student’s t-test at p-value < 0.05. nd = not detected.

Class Compound RetentionTime
(min)

Linear Retention
Index

Mean of Volatile Compounds
Concentration (1-Octanol Equivalents)

Org IPM
Aldehydes (E)-2-Hexenal 11.89 1192 0.25 ± 0.25 a 6.82 ± 2.35 a

Hexanal 5.34 1067 nd 5.65 ± 0.75
Octanal 15.95 1274 0.47 ± 0.07 b 0.76 ± 0.11 a

Tetradecanal 37.71 1942 0.63 ± 0.14 a 0.44 ± 0.22 a

5-Methylfurfural 27.51 1578 nd 0.81 ± 0.03
Nonanal 20.46 1376 0.45 ± 0.03 nd

Alchools 6-Methyl-1-heptanol 18.11 1319 0.06 ± 0.03 a 0.03 ± 0.03 a

1-Pentanol 14.27 1241 0.14 ± 0.07 nd
2-Nonanol 29.29 1508 0.10 ± 0.01 a 0.05 ± 0.05 a

2-Heptanol 17.82 1312 0.84 ± 0.14 a 0.43 ± 0.08 b

β -Linalool 26.13 1535 0.55 ± 0.14 a 0.05 ± 0.05 a

Isogeraniol 40.33 2039 0.21 ± 0.11 a 0.33 ± 0.24 a

Nonanol 29.56 1645 nd 0.18 ± 0.09
Trans-geraniol 34.71 1827 0.99 ± 0.08 a 0.67 ± 0.09 b

Ketones Acetoin 15.23 1259 0.31 ± 0.11 nd
2-Heptanone 9.99 1136 0.60 ± 0.20 a 0.45 ± 0.16 a

2-Nonanone 20.27 1372 0.38 ± 0.10 b 1.08 ± 0.27 a

2-Undecanone 27.58 1581 0.18 ± 0.04 b 1.15 ± 0.24 a

Pentan-2-one 3.91 1012 nd 7.35 ± 2.35
Esters 1-Octyl acetate 23.71 1463 3.05 ± 0.19 a 0.75 ± 0.15 b

Ethyl hexanoate 13.47 1225 0.71 ± 0.08 a 2.26 ± 1.13 a

Isoamyl Acetate 6.97 1130 0.84 ± 0.24 nd
Methyl Salicylate 32.75 1756 0.66 ± 0.33 a 1.02 ± 0.31 a

Sesquiterpenes β-Caryophyllene 27.21 1569 5.48 ± 1.38 nd
α-Humulene 29.39 1640 1.34 ± 0.43 nd
α-Ionone 34.5 1819 13.99 ± 1.16 a 13.35 ± 0.80 a

β-Ionone 36.79 1906 19.86 ± 1.97 b 35.00 ± 2.49 a

Dihydro α-ionone 33.59 1786 1.57 ± 0.09 a 0.96 ± 0.24 b

Dihydro β-ionone 34.05 1802 5.63 ± 0.86 a 6.53 ± 1.33 a

Monoterpenes 2-Carene 15.47 1264 0.07 ± 0.03 a 0.38 ± 0.24 a

2-β-Pinene 6.19 1092 nd 0.54 ± 0.16
α-Phellanderene 8.79 1124 0.01 ± 0.01 a 15.33 ± 4.72 a

α-Terpinene 9.65 1133 nd 0.86 ± 0.43
β-Myrcene 9.18 1128 nd 4.91 ± 1.90

β-Phellandrene 11.32 1177 nd 9.65 ± 2.96
γ-Terpinene 13.65 1229 nd 0.67 ± 0.37
Limonene 10.85 1164 0.08 ± 0.01 b 2.54 ± 0.79 a

o-Cymene 14.81 1251 nd 2.69 ± 0.90
Acids Acetic acid 22.28 1424 2.38 ± 0.62 a 1.02 ± 0.22 a

Nonanoic acid 42.45 2119 0.41 ± 0.18 a 0.08 ± 0.08 a

Octanoic acid 39.94 2025 0.78 ± 0.15 nd
Alkanes Tridecane 17.38 1302 7.02 ± 3.55 a 0.02 ± 0.02 a

Z-3-Heptene 7.55 1131 nd 2.34 ± 0.58
E-3-Heptene 7.77 1113 nd 1.89 ± 0.56

The cultivation method had a significant effect on the overall amount of acids, ketones,
aldehydes and monoterpenes emitted by fruit, being the latter almost absent in organic
fruit. IPM fruit had a generally higher VOCs emission and the volatilome was dominated
by terpenes accounting for half of the total VOCs emission. Hexanal, 5-methylfurfural,
nonanol, pentan-2-one, 2β-pinene, α-terpinene, β-myrcene, β-phellandrene, γ-terpinene,
o-cymene, Z-3-heptene and E-3-heptene were not detected in organic fruits, whereas
nonanal, 1-pentanol, acetoin, isoamyl acetate, β-caryophyllene, α-humulene and octanoic
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acid were missing in IPM grown berries. Although present in both treatments, limonene,
β-ionone, 2-nonanone and octanal were more intensely emitted in IPM samples, whereas
the emission of 1-octyl acetate, 2-heptanol and trans-geraniol was higher in organic fruits.
PCA performed on the relative emission of single VOCs showed a clear separation of
organic and IPM fruit volatilomes along components 1 and 2, explaining 85% and 9% of the
total variance, respectively (Figure 6a). The four most important VOCs responsible for data
clustering were α- and β-phellandrene, pentan-2-one and β-caryophyllene (Figure 6b).
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Figure 6. (a) Principal Component analysis of volatile organic compounds (VOCs) of raspberry
fruits ‘Enrosadira’ cultivated with organic or IPM practices. Ellipses enclose confidence level = 95%.
(b) Correlation circle plot with discriminating VOCs is shown.

Canonical correlation analysis was performed to investigate correlation between
VOC classes and key bacterial genera (Figure 7). Bacterial genera abundance in organic
and IPM fruits was averaged and a threshold of 3% was imposed to select key bacterial
genera. Gluconobacter correlated with acids and alcohols, Brevibacillus, Methylobacterium
and Sphingomonas genera were associated to aldehydes, whereas Rosenbergiella correlated
with ketones and monoterpenes.
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3.4. In Silico Fruit Volatilome Assembly

To estimate the role of bacterial organic volatile compounds (bVOCs) on fruit volatilome,
the emission of bVOCs by the bacterial species isolated from raspberry fruit was analysed
by PTR-MS (Table S2). To mimic the fruit environment, bacterial isolates were grown on
filter sterilized raspberry juice. The m/z emissions of each bacterial isolate, weighted by
the relative abundance of its genus calculated from NGS data, were used to construct an in
silico-assembled bacterial volatilome for organic and IPM grown fruit. PCA showed a clear
discrimination of organic and IPM berries according to the volatilome of fruit associated
bacterial community (Figure 8a). To identify the most relevant bVOCs among the 118
masses of the dataset, the loading values of Principal Component 1 (77% of explained
variance) were extracted. The m/z fragments that showed the highest loading values were
m/z 107.0349, m/z 33.033, m/z 97.0274, m/z 62.0216, m/z 59.049, m/z 69.033 and m/z
87.08. m/z 33.033, m/z 69.033, m/z 97.024 and m/z 107.0349 were putatively identified as
methanol, furan, furfural and benzaldehyde, respectively, whereas m/z 59.049 and m/z
87.08 may attributed to linear aldehydes and ketones (C3 and C5, respectively) (Figure 8b).
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Figure 8. Characterization of volatile organic compound profiles, produced by assembling the
emissions of single bacterial isolates from organic or IPM grown raspberries. Diagram shows
(a) Principal Component (PC) 1 and 2 of principal component analysis (PCA) of the simulated fruits.
Ellipses enclose confidence level = 95%. (b) loadings of the 20 m/z fragments showing highest
correlation with PC1 in the PCA analysis.

4. Discussion
4.1. Diversity of Fruit-Associated Microbiomes

Several studies demonstrated the influence of management practices on soil microbial
composition and functions [52]. In recent years, the microbial communities in the phyllo-
sphere have gained increasing attention [53]. Nonetheless, only a few studies have focused
on the microbial communities hosted by fruits grown with different cultivation methods,
mainly with the purpose of assessing risks to human health [29] or managing post-harvest
crop storage [54].

In this work, NGS analysis highlighted that IPM raspberry fruits were characterized by
a higher bacterial biodiversity in comparison to organically grown ones, with Brevibacillus
(28% relative OTU abundance), Methylobacterium (12%), Rosenbergiella (18%) and Sphin-
gomonas (5%) being the most abundant genera. Rosenbergiella and Sphingomonas spp. were
almost absent in organic fruits. Rosenbergiella belongs to the family Enterobacteriaceae and
has been detected in several plant species [55]. Sphingomonas has been found in natural
environments, such as soil and plants, and has been proven to possess multifaceted positive
functions [56].

The bacterial community of organic berries was dominated by the genus Gluconobacter
(73%), followed by Brevibacillus (14%) and Methylobacterium (4%) (Figure 1). Gluconobacter
was only found on organic fruits. This genus includes acetic acid bacteria known to live
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on a wide variety of fruits, and encompasses saprophytic, symbiotic, and pathogenic
species [57]. In particular, some Gluconobacter strains are known to cause postharvest fruit
losses, by causing rotting and browning [58].

Farming practices such as fertilizer or pesticide application shape microbiome compo-
sitions by modifying nutrient availability and ecological niches [59]. Although different
research works suggest that organic cultivation promotes microbial biodiversity in the
soil and on fruit surface [29,60,61], our results indicate that, in raspberry, IPM cultivation
promoted bacterial biodiversity on fruit. It can be hypothesized that in crop systems with
low inputs and disturbances, such as that of organic farming, microbial communities are
dominated by few, highly adapted bacterial species able to outcompete potential generalist
colonizers, thus becoming predominant. Indeed, the natural habitats of Gluconobacter spp.,
the prevalent bacterial genera on organic fruits, are flowers and fruits [62].

On the other hand, chemical pesticide application affects microorganisms in complex
communities, opening ecological niches otherwise occupied by competing microorgan-
isms [63], with microbial community dynamics depending on the chemical nature, rates
and frequency of treatments.

4.2. Quality Parameters of Organic and IPM Raspberry Fruits

Several studies report the influence of the cultivation method on the quality of fruits
and berries [64–66]. As raspberry is a highly perishable product, the identification of the
optimal maturity stage is crucial for fruit quality at consumption. Visual assessment of
fruit colour or ease of fruit detachment from the receptacle are the parameters mostly
used in raspberry industry to determine harvesting time. In this work, organic and
IPM fruits were harvested at the same levels of detachment force, but they differed for
several qualitative parameters (Figure 3). IPM fruits were characterized by higher weight
and titratable acidity, whereas organic ones contained more anthocyanidins. During the
raspberry maturation process, acidity shows a steady increase in the early stages, followed
by a substantial decrease during ripening. Anthocyanidins content and fruit weight
increase during maturation. Finally, variations in soluble solid content are negligible at
the maturation stages close to harvest (i.e., physiological maturity) [4]. Therefore, the
differences observed in the quality parameters may be related to a more advanced ripening
of organic berries than IPM ones, in spite of similar detachment forces.

Exogenous IAA application on berries has been observed to stimulate ethylene emis-
sion, thus promoting fruit ripening [67]. IAA-producing bacteria, such as P. agglomerans
and T. terrea, could be isolated only from organic fruit (Table 2). In this view, the differ-
ence in maturation could be related to the bacteria residing on the fruit, or on the fruitlet
during development. An increase in ethylene production and respiration rate has been
detected from the white fruit stage until full maturity [67,68] and induction of anthocyanin
formation was promoted after ethylene application [69]. We suggest that the promotion
of maturation by IAA producing bacteria exceeded the negative effect of auxin on an-
thocyanin content. In fact, IAA has been reported to have a negative correlation with
anthocyanin contents indicating that anthocyanin accumulation starts when IAA content
decreases [70]. Moreover, in raspberry, exogenous application of a high concentration
of IAA (100 µM) at fruit with equal ripening stage was found to depress anthocyanins
accumulation [71]. However, previous studies highlighted that organic cultivation promote
anthocyanin content in berries [64,66,72,73]. Thus, other factors may have contributed
to the increase of anthocyanin. It is generally assumed that organic plants contain more
secondary metabolites, as a form of protection against the stress factors remediable in
IPM crops by cultural inputs, i.e., fertilizers and pesticides [74]. In horticultural plants, an
increase of total nitrogen generally depresses anthocyanin accumulation [75,76]. However,
in strawberry cell culture, the percentage of NH4

+ in the total nitrogen concentration
directly correlated with changes in cell density and anthocyanin content [77]. Similarly, in
purple basil, NH4

+ availability positively correlated with the contents of anthocyanins [78].
All the bacterial species uniquely isolated in organic fruit can produce NH4

+. Thus, the
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higher availability of this cation in fruits might have increased anthocyanin in organically
produced berries.

Fruit acidity is an important component of organoleptic quality [79] and in berries
it is influenced by several environmental and plant factors (i.e., plant age and genotype,
temperature, harvest season and orchard location) [21]. In previous studies on raspberry
‘Tulameen’ and ‘Kweli’, higher titratable acidity values were found in organic raspberries
versus IPM grown ones [73]. Contrastingly, our results highlighted lower acidity values
in organic fruits. Several studies suggest a role of bacteria on fruit acidity. Bacillus sp.
inoculated on flowers and leaves of sour cherry affected sugar content and titratable acidity
of fruits [80]. Similarly, application of Pseudomonas fluorescens on strawberry plantlets
altered fruit acidity [81]. In our work, canonical correspondence analysis reveals possible
interaction between titratable acidity of fruits and Methylobacterium and Sphingomonas
genera (Figure 4), more abundant in IPM fruits. Methylobacterium spp. is mainly found
on the phyllosphere where it is able to use methanol as the sole carbon source, whereas
several Sphingomonas spp. strains have recently gained attention for their ability to produce
gibberellins [56,82,83], together with ACC deaminase-mediated reduction of ethylene in the
host [84]. The particular combination of hormones may delay late ripening processes, such
as degradation of organic acids. Additionally, the direct contribution of Methylobacterium
or Rosenbergiella spp. [85,86] to fruit organic acid content cannot be ruled out.

For raspberries, the increase of fruit weight is an important factor to reduce production
costs, especially labour [87]. Although plant nutrition is one of the main factors directly
influencing berry weight [21], application of plant growth promoting bacteria on fruits
also contributed to the increase of berry weight and size [81]. In our study, fruit weight
was significantly higher in IPM fruits and correlated to Brevibacillus and Rosenbergiella
abundance (Figure 4). Brevibacillus spp. has been recorded in very diverse environmental
habitats and several strains successfully promoted plant growth [88]. For instance, applica-
tion of Brevibacillus spp. on eggplant and pepper led to an increased number of fruits per
plant as well as fruit size, weight, and yield [89]. Rosenbergiella is a novel genus initially
identified in floral nectar of almond [90], but it has been found in the flowers of several
plant species [86], pollen and insects associated with the flower [91]. This bacterium has
been isolated also from fruit pericarp [92], suggesting that its population on the flower
could be transmitted also on fruit during development and possibly to seeds [93]. In seeds,
Rosenbergiella seems to promote germination by the production of IAA [94]. Although the
Rosenbergiella spp. strain, isolated in this work from fully ripe fruit, did not show IAA
production, this genus is known to include IAA-releasing species which may promote
plant and fruit growth [95]. IAA has also an important role in fruit development which
was demonstrated by the overexpression of the auxin synthesis-related gene (DefH9-iaaM)
in transgenic plants, that showed increased fruit size and number [96]. Altogether, the
observed differences in fruit quality, size and yield may originate indirectly as a result
of bacterial influence on plant growth and fitness at different phenological stages or on
different organs.

4.3. Volatilome and Bacterial Contribution to Fruit Aroma

Raspberry aroma is a key component for consumers’ perception of sensory quality [5].
Monoterpenes are the largest class of compounds, among which terpinen-4-ol, geraniol,
linalool, limonene, nerol, p-cymene, terpinolene, α- and β-phellandrene, γ-terpinene and
α- and β-pinene are the most frequently reported [5]. However, only few of the several
VOCs identified in the literature are recognized as important descriptors of raspberry
aroma, namely 4-(4-hydroxyphenyl)butan-2-one (also known as raspberry ketone), which
contributes to the pure raspberry aroma; α-ionone and β-ionone (whose odour is described
as violet-like), which are responsible for the overall fruit aroma [97]. In this work, raspberry
ketone could not be detected because its linear retention index (LRI) lies outside the
detection limit of this work.
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Interestingly, IPM fruits were richer in β-ionone and 5-methylfurfural. The first
compound is characterized by sweet and fruity odour, with seedy nuances, whereas the
second one typically has almond and cherry notes. These VOCs possibly conferred more
intense floral and fruity notes to the aroma of IPM fruits, which were also characterized by
the presence of hexanal. The presence of this compound, a green-odour leafy compound,
conferring grassy notes to fruit aroma, corroborates the hypothesis that IPM strategy
delayed ripening of berries. A higher content of 2-heptanol and trans-geraniol in organic
raspberries was observed. Interestingly, both compounds are known for being emitted by
flowers of many species and to be effective insect repellents [98,99], thus suggesting that
they have been produced as a defence-related response in organic fruit where pest attacks
are less controlled. During post-harvest handling, raspberry fruits are highly susceptible,
to fungal diseases, in particular grey mould caused by B. cinerea [100]. Remarkably, in
this work IPM fruits were lacking β-caryophyllene, which is one of the volatile organic
compounds proven to lower the susceptibility of fruits to B. cinerea [100]. Identification of
VOCs present in raspberry fruits have been recently extensively reviewed [5]. In addition to
VOCs previously described, we observed the presence of tetradecanal, 3-heptene isomers
and 1-octyl acetate. The latter was found to be emitted in a significant higher amount in
basil plants treated with NaCl [101]. In our work, this compound was significantly more
abundant in organic raspberries which might suggest that these plants underwent and seek
to react to a more stressful condition with respect to IPM ones. Overall, these results might
be explained by the lack of use of pesticides and fertilizers in the organic management.
Indeed, these conditions might stimulate plant self-protection mechanism and promote the
synthesis of secondary metabolites in plants and fruits [102].

Bacteria produce VOCs that act as direct plant-protectants against pathogens, induce
plant defences or promote plant growth and nutrition [103]. Here, we observe a difference
in the microbiome and volatilome of raspberry fruits originating from different cultivation
methods. Although demonstrating the bacterial origin of a particular volatile compound
requires dedicated research, it is interesting to note that emission of acids by raspberry
fruits is highly correlated to the presence of Gluconobacter bacteria (Figure 7). In our work,
among the volatile compounds belonging to the acids, part of the acetic acid emitted
by fruits might be of bacterial origin. Indeed, Gluconobacter spp. is known to colonize
sugar-rich niches (such as fruit skin) and to efficiently convert sugars to acetic acid [104].
Rosenbergiella is a distinctive and abundant colonizer of IPM grown raspberries, here
correlated with ketones and monoterpenes emissions. The draft genome of R. nectarea
suggests that this species may affect fruit quality by releasing terpenoids and by degrading
pectins [86], thus confirming a possible role in volatile emission diversity. Methylobacterium,
Brevibacillus and Sphingomonas are more abundant in IPM grown fruits and positively
correlate with aldehydes emission. Among these bacterial genera, Methylobacterium (in
particular M. extorquens) has been thoroughly studied for its ability to enhance strawberry
flavour [105,106]. In fact, M. extorquens possesses alcohol dehydrogenase enzymes capable
of oxidizing a wide range of alcohols to aldehydes and ketones.

Volatiles produced by bacterial isolates on raspberry juice were used for the assembly
of in silico fruit volatilome of organic and IPM fruits. Although authors are aware of the
limitations imposed by such an artificial system, a clear separation among VOC typical of
microbiomes of differently grown berries was observed (Figure 8). Fragments of m/z 59.049,
87.08, 97.0274 and 107.0349 were identified as belonging to the aldehyde or ketone class, and
were typical of the IPM in silico volatilome. Interestingly, this result is in accordance with
volatile emissions of the real fruits and, together with correlations between microbiome
and VOC emissions, pave the way for further studies about the role of bacteria in shaping
raspberry aroma.

5. Conclusions

This work provides evidence of the effects of organic and IPM cultivation methods
on quality and aroma of raspberry fruits, and relates them with the cultivation-mediated
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changes in fruit-associated bacterial microbiome, supporting the hypothesis of a contribu-
tion of the fruit-associated microflora on raspberry quality traits. Organic farming practices
were associated to lower bacterial biodiversity of fruit epiphytic microbiome, and resulted
in smaller fruits with higher anthocyanin content and lower titratable acidity with respect
to IPM fruits. Additionally, IPM fruits were characterized by a higher emission of sweet and
fruity odours. Although the manipulation of fruit microbiome composition by cultivation
methods requires further research, a higher microbial diversity plausibly determines a
more complex, and overall more pleasant fruit aroma, and its enhancement may positively
impact on raspberry quality. The involvement of bacteria in fruit development and quality
was corroborated by known hormonal and metabolic activities of the microbial species
isolated or recognized in the genera identified by NGS analysis. Some bacterial genera,
including Gluconobacter, Sphingomonas, Rosenbergiella, Brevibacillus and Methylobacterium
are suggested to contribute to fruit quality, and to enable the control of certain aspects
of raspberry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9081617/s1, Figure S1: Rarefaction curves of community richness estimates
of IPM (Conv) and (Organic) raspberry samples. Table S1: Diversity indexes for IPM and organic
raspberry samples. Table S2: Emission (mean ± SE) and tentative identification of m/z fragments de-
tected by proton-transfer reaction−mass spectrometry (PTR-MS) analysis of raspberry juice cultures
of bacterial isolates, and loadings of each m/z fragment on principal components 1, 2 and 3 of the
principal component analysis (PCA) built on in silico fruit emissions. Nd = not detected.
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