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Abstract: Olive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants.
The onset of this economically devastating disease has been associated with a Gram-negative plant
pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution
mass spectrometry detection is one the most widely applied technologies in metabolomics, as it
provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the
ability to identify metabolites. The purpose of this work is the development of a global metabolomics
mass spectrometry assay able to identify OQDS molecular markers that could discriminate between
healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an
HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between
HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds
highly expressed in the OP group were annotated; results obtained by this metabolomic approach
could be used as a fast and reliable method for the biochemical characterization of OQDS and to
develop targeted MS approaches for OQDS detection by foliage analysis.

Keywords: olive quick decline syndrome; liquid chromatography; high-resolution mass spectrome-
try; metabolomics

1. Introduction

The year 2013 will be recorded as the annus horribilis for olive trees of the Salento
Peninsula in south-eastern Italy [1]. Compared to other Italian regions, olive cultivation in
Puglia (also known as Apulia) has a more significant spread, with the associated strong
economic impact. For nearly a decade in the province of Lecce and the southern zones of the
Brindisi and Taranto provinces [2], olive trees have been affected by a progressive disease
that begins with foliage desiccation, quickly ending up with the death of the whole tree.
This condition of unknown etiology was named “olive quick decline syndrome” (OQDS,
known in Italy also as CoDiRO, Complesso del Disseccamento Rapido dell’Olivo) [3,4].
OQDS is a disease characterized by leaves yellowing and desiccation of twigs and small
branches, which eventually results in tree death. In the early stages, symptoms appear on
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the apical parts of trees, and subsequently, they then extend to the rest of the crown, which
acquires a burned-like aspect in the last stages of disease. To contrast OQDS and promote
new growth, heavy pruning has always been applied as an agronomical control approach,
but this strategy has proven ineffective [5]. The onset of this economically devastating
disease has been associated with Xylella fastidiosa (Xf) infection. Xf is a formidable Gram-
negative pathogen that has already caused enormous damage in the United States and
South America [6]. These bacteria form biofilms inside xylem vessels, leading to their
occlusion, which eventually impairs water and mineral salt uptake [7] in the apical regions
of the plant organism. To avoid an uncontrolled spread of this pathogen, the European
Union has introduced mandatory measures of containment mostly via the eradication of
plants carrying the infected phenotypes and all the plants growing in their surroundings
creating a buffer zone to protect the rest of the Italian Peninsula [8].

This bacterium has been proven to be responsible for the development of some other
economically significant diseases, including Pierce’s disease of grapevine [9], leaf scorch of
almond, oleander, and coffee [10], citrus variegated chlorosis, and other diseases of crop,
forest, and landscape plants [11]. In the case of olive, damage may be aggravated by the
presence of fungi of different genera, Phaeoacremonium and Phaemoniella in particular, but
also Pleumostomophora and Neofusicoccum, which colonize and necrotize sapwood [2]. In
order to develop less drastic strategies for containing the disease spread, researchers have
studied bacterial homeostasis and its interaction with plants, investigating the role of dif-
ferent small molecules, such as minerals and phenolics [12–14]. Recently, Baldassarre et al.
proposed a nanotechnological tool to contrast infection exploiting CaCO3 nanocarriers [15].
To date, however, except for quarantine and eradication, there are no ways to fight this
infection.

An early disease detection method also able to characterize the biochemistry of the
infection and of the plant response would certainly be an efficient weapon to contrast
Xylella’s spread. Unfortunately, to date, it is possible to detect the presence of Xf in olive
trees only by serological (ELISA) and molecular (PCR) methods [16,17]. Both methods
are sensitive, but they cannot be directly used to characterize the complex phenomena
occurring during infection.

Metabolomics is one of the most powerful tools for characterizing molecular profiles
and their correlation with physiological or pathological conditions in biological or natural
samples [18]. The main goal of this work is to propose an untargeted metabolomics
approach combined with an appropriate analytical method to identify OQDS molecular
markers able to discriminate between healthy and infected trees. This global metabolomics
approach is potentially able to measure the levels of thousands of metabolites in a single
analysis and suits perfectly for our purposes thanks to the comprehensive information
on the composition of a metabolite pool it can provide [19]. Beside the possibility of
characterizing the biological phenomena occurring during the infection, the outcomes of
this type of investigation could also be used to identify a panel of biomarkers that could
then be exploited by an analytical laboratory through targeted metabolomics approaches.
These methods require a priori knowledge of metabolites of interest but are cheaper, faster,
and more accurate if compared to untargeted ones [20].

2. Results

Principal component analysis was performed to understand the factors which account
for the larger fraction of variance in the dataset and the results are shown in Figure 1.
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Figure 1. PCA score plots for all the samples analyzed: (a) bidimensional separation highlighting the infection state: red 
circles represent the diseased population, violet triangles the quality control (QC) samples, light blue squares the healthy 
samples and green crosses the healthy dried samples. For each sample class, the bigger symbol (circle, triangle, square 
and cross) represents its center of gravity. (b) bidimensional separation highlighting the origin factor; orange circles 
represent samples originating from Liguria, green triangles are used for samples originating from Puglia while violet 
squares for QC pooled samples. 

The results of the univariate statistical analysis on the full set of features extracted 
from the raw data substantially confirmed the marked difference between healthy and 
diseased samples. Out of the overall set of 3086 features, 1770 showed a significantly 
different concentration in healthy and diseased samples (p < 0.01 after Bonferroni 
correction). The two-dimensional map of the identified features is presented in Figure 2. 
In order to prioritize the annotation phase, we decided to focus on the features showing 
the higher contrast in the two sample classes, deciding to classify potential healthy–
infected discrimination markers all the significant features which show a change of their 
median intensity from the first to the fourth quartile in the healthy-infected sample 
classes.  

With this criterion, out of the 1770 significant features, 118 were classified as infection 
state markers and 37 as healthy state markers. Their position in the mz/rt plane is also 
highlighted in Figure 2; Tables S1 and S2 report, respectively, infected and healthy 
discriminating features. 

 

 

Figure 1. PCA score plots for all the samples analyzed: (a) bidimensional separation highlighting the infection state: red
circles represent the diseased population, violet triangles the quality control (QC) samples, light blue squares the healthy
samples and green crosses the healthy dried samples. For each sample class, the bigger symbol (circle, triangle, square and
cross) represents its center of gravity. (b) bidimensional separation highlighting the origin factor; orange circles represent
samples originating from Liguria, green triangles are used for samples originating from Puglia while violet squares for QC
pooled samples.

The score plot shows the distribution of the sample points in the PC1 vs. PC2 planes
which account for a significant fraction of the overall variance of the dataset (50.1%).

The results of the univariate statistical analysis on the full set of features extracted
from the raw data substantially confirmed the marked difference between healthy and
diseased samples. Out of the overall set of 3086 features, 1770 showed a significantly
different concentration in healthy and diseased samples (p < 0.01 after Bonferroni correc-
tion). The two-dimensional map of the identified features is presented in Figure 2. In
order to prioritize the annotation phase, we decided to focus on the features showing the
higher contrast in the two sample classes, deciding to classify potential healthy–infected
discrimination markers all the significant features which show a change of their median
intensity from the first to the fourth quartile in the healthy-infected sample classes.

With this criterion, out of the 1770 significant features, 118 were classified as infec-
tion state markers and 37 as healthy state markers. Their position in the mz/rt plane is
also highlighted in Figure 2; Tables S1 and S2 report, respectively, infected and healthy
discriminating features.

HPLC-HRMS and tandem MS analysis allowed for the identification of key molecules
that are expressed in a significantly different manner between the groups of healthy and
sick leaves. These features could then be used as putative markers to discriminate the HP
and OP samples.

Among all the discriminating features we annotated, thanks to the HPLC-HRMS
and tandem HRMS approach, 16 molecules and two additional molecules reported to
be expressed in Olea europaea leaves (O.e Marker) [21] were listed as well. The details of
chemical identification are reported in Table 1, Figure 3 shows some examples of tandem
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MS experiments reporting the fragmentation pathways of some annotated molecules.
While their intensity profile is presented as a boxplot in Figures 4 and 5.
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Table 1. Annotated molecules; each feature is specified whenever it is a health or infection marker or a reported species-specific marker (O.e Marker) for Olea europaea. The table also
reports the double bond equivalent (DBE) and the mass accuracy shift in ppm.

Feature ID Healthy–
Infected m/z [M − H]− R.t. (min) MSI Level Fragments

(Intensity)
Proposed
Formula Proposed Name (*) DBE ∆ (PPM)

FT0449 Healthy 286.0732 2.1 3 C15H13NO5
Grandisine III (b)

CAS: 53421-39-9
10 5.79

FT0534 Infected 305.0698 11.2 2
305.0698 (100)
225.1133(14)
96.9608(5)

C12H18O7S
12-Hydroxy Jasmonate

sulfate (a)

CID: 44815853
4.5 0.92

FT0659 Healthy 330.1871 25.1 3 C23H25NO Isomurrayazoline (b)

CAS: 85547-20-2
12 3.94

FT0852 Infected 368.1366 13.0 3 C17H23NO8
Niazicinin (b)

CID: 101920262
7 5.64

FT1073 Infected 407.1346 3.1 2

337.0925(100)
305.1029 (90)
375.1081 (48)

407.1344
(41)151.0405 (20)

C20H24O9
Nodakenin (a)

CID: 73191
9.5 0.95

FT1089 Infected 409.2005 9.6 3 C25H30O5
Vismione D (b)

CID: 5281573
11 2.37

FT1133 Infected 419.1847 13.4 3 C26H28O5
Ovaliflavanone D (b)

CID: 42607825
13 2.52

FT1228 Infected 439.1536 21.1 2 393.1762(100)
197.0821 (35) C28H24O5

Marchantin A (a)

CID: 88418-46-6
17.5 0.39

FT1775 O.e Marker 539.1769 20.9 2 377.1239 (100)
507.1507 (5) C25H32O13

Oleuropein glucoside (c)

CID: 5281544
10 0.79

FT1879 Infected 557.2002 2.1 2
513.2335 (100)
345.1185 (21)
227.1288 (8)

C29H34O11
Physalin (a)

Metlin ID: 89909
13.5 0.46

FT1947 Infected 569.1844 20.1 2

537.1612 (100)
403.1242 (95)
569.1873 (46)
407.1344 (13)

C26H34O14
Decuroside III (a)

CAS: 96638-81-2
10.5 1.69

FT2071 Infected 593.1404 18.2 2 593.1507 (100)
285.0403 (98) C27H30O15

Isoorientin rhamnoside (a)

CID: 16126794
13 3.79



Metabolites 2021, 11, 40 6 of 15

Table 1. Cont.

Feature ID Healthy–
Infected m/z [M − H]− R.t. (min) MSI Level Fragments

(Intensity)
Proposed
Formula Proposed Name (*) DBE ∆ (PPM)

FT2149 O.e Marker 609.1458 14.5 3 C27H30O16
Rutin (c)

CID: 5280805
13 0.38

FT2403 Infected 701.2271 11.7 2 539.1768 (100)
377.1238 (5) C31H42O18

6’-O-beta-D-
Glucopyranosyl-

oleuropein (a)

CID: 102078602

11 3.13

FT2416 Infected 707.1863 24.7 3 C32H36O18

Patuletin
3-(4”-acetylrhamnosid)7-
(2”’-acetylrhamnoside) (b)

CID: 44259840

15 5.73

FT2574 Infected 757.2582 21.9 3 C34H46O19
Aldosecologanin (b)

CID: 10908841
12 3.58

FT2646 Infected 783.2375 24.8 3 C35H44O20

Rhamnazin 3-rhamninoside
(b)

CID: 44259609
14 3.51

FT2654 Infected 785.2533 24.8 3 C35H46O20
Purpureaside (b)

CID: 11953944
13 3.76

(*) Putative annotation obtained by: (a) Metfrag, MoNA, (b) Metlin, (c) Xcalibur Qual Browser.



Metabolites 2021, 11, 40 7 of 15
Metabolites 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Boxplots for the annotated features; abundances are reported for each class together with the origin factor. Red 
boxes represent the diseased samples, blue boxes the healthy samples and green boxes the dried samples. 

 

Figure 4. Boxplots for the annotated features; abundances are reported for each class together with the origin factor. Red
boxes represent the diseased samples, blue boxes the healthy samples and green boxes the dried samples.

Metabolites 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Boxplots for the annotated features; abundances are reported for each class together with the origin factor. Red 
boxes represent the diseased samples, blue boxes the healthy samples and green boxes the dried samples. 

 
Figure 5. Boxplots for reported O.e species-specific markers Red boxes represent the diseased samples, blue boxes the
healthy samples and green boxes the dried samples.



Metabolites 2021, 11, 40 8 of 15

Boxplots show the relative abundance of features in the different classes of samples
(infected, healthy, and healthy desiccated), allowing for interpreting and inferring their
distribution related to the sample state of health.

In Figure 5, the boxplot reports the features considered as O.e markers [21].

3. Discussion

To date, there are no literature reports of the use of a HPLC-HRMS untargeted method
to discover the early infection markers for Xylella fastidiosa-related OQDS. However, sev-
eral untargeted metabolomics approaches were developed for the characterization and
valorization of different Olea europaea cultivars and origins [22,23] and their oils [24,25].

3.1. HPLC-HRMS Analytical Method Development

The analytical chromatographic method proposed was developed with the aim of
obtaining the best separation of analytes in the shortest time possible to maximally lower
the inter-run retention time deviation of the molecules, thus also minimizing the peak-
picking errors. The HPLC method chosen consisted in a multi-step gradient which was
empirically time-optimized during the experimental design to better separate both high
hydrophilic compounds such as organic acids and glycosylated metabolites up to lipophilic
phytosterols. MS acquisition was performed in the negative ion mode as it is less affected
by background noise than the positive ion mode [26]. An example of TIC chromatograms
is reported in Figure S1.

3.2. Sample Two-Dimensional Clustering

In Figure 1a, three different sample clusters are clearly visible. The tighter cluster is
composed of QC samples (violet) and its low spread confirms the low variability of the
analytical pipeline. As expected, infected samples (red dots) show a higher variability, but
they are otherwise a well-separated group. The larger and most diverse cluster is composed
of healthy and desiccated samples, which are only partially separated in this bivariate
projection. Interestingly, desiccated samples are positioned far away from the diseased
group, indicating that desiccation alone is not responsible for the metabolic separation
between healthy and diseased samples. It is worth noting that healthy and diseased
samples are separated along the direction of larger variance (PC1, 49%) and this indicates
that their difference is the most important factor affecting the overall variability of the
dataset.

As discussed in the introduction, regionality might also play a role in sample cluster-
ing, acting as a potential confounder. For this purpose, the association of the samples to
their specific origin is shown in Figure 1b. Healthy and desiccated samples from Puglia
and Liguria are clearly distributed homogeneously inside the “healthy” cluster. These
data suggest that also the origin of samples (Liguria vs. Puglia) does not play a prominent
role in driving the observed differentiation between healthy and diseased samples. QC
samples, obtained by pooling equal aliquots of every single sample, show a very condensed
grouping in the PCA score plot. Their variance on both PCA axes is so narrow that we can
assess that there is no evident analytical drifting that could affect our analytical method.

3.3. Features Annotation

Most of the molecules annotated belong to the class of plants secondary metabolites
such as 12-hydroxy jasmonate sulfate, a molecule discovered in Arabidopsis thaliana which
derives from jasmonic acid, which has a signaling role mediating diverse developmental
processes and plant defense responses. The potential finding of this molecule suggests that
the infected plant builds a defense response against the stress condition [27].

Nodakenin is a coumarin compound firstly found in the root of Angelica gigas and,
as a coumarin, its function is to discourage herbivores and insect species from eating the
plant [28]. Together with nodakenin, another coumarin, decuroside, has been MS/MS-
annotated. Physalin, first discovered in Physalis alkekengi, is a phytosteroidal molecule [29];
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this molecule has accentuated antimicrobial and antibacterial effects [30] and its presence
can be attributed to the plant’s stress condition. Another annotated compound: marchantin
A, a macrocyclic bis-benzyl ether isolated from Marchantia emarginata, is known for its
antiprotozoal activity, suggesting that the plant may also defend from concurrent protozoal
infections [31]. 6’-O-beta-D-glucopyranosyloleuropein is a molecule expressed in the
Oleaceae plant family and belongs to the class of secoiridoid diglucosides [32], similar
to the widely known secoiridoid glucoside oleuropein which has also been annotated
as a proof of consistency for this work since it is a highly species-specific marker for
Olea europaea, together with rutin.

Several other features were annotated by using only the HRMS discrimination power
since their intensity was not able to trigger the dependent data acquisition, such as ni-
azicinin A, a phenolic glucoside; vismione D, a molecule with antiprotozoal activity;
the flavone ovaliflavanone; patuletin 3-(4”-acetylrhamnoside)-7-(2”’-acetylrhamnoside),
a flavone from the aerial parts of Echinacea angustifolia [33]; aldosecologanin, a iridoid glyco-
side isolated from Lonicera japonica [34]; rhamnazin 3-rhamninoside, a flavonoid glycoside
with anti-fungal and antibacterial activity [35]; and purpureaside C, a phenolic glycoside
with an antimicrobial effect [36].

On the other hand, we annotated some features mostly abundant in healthy samples
such as the acridone alkaloid grandisine III isolated in Citrus grandis [37] and isomurraya-
zoline, a carbazole alkaloid found in Murraya koenigii [38].

3.4. Feature Abundance Class-Related Variability

Figure 4 shows abundance boxplots of the annotated features in each class. Most of
the features identified appear to be up-regulated in infected samples and it is interesting to
notice the intensity change in each class; the desiccation seems to play a role in incrementing
the signal of a given feature, probably by increasing its concentration, reducing the amount
of water. This phenomenon is, however, not as intense as what happens in the infected class.

Regionality is a known factor in differentiating the metabolome of Olea europaea trees
and leaves [21]; in this case, it seems to play a role with some features such as FT2071
and FT1133, where in these, we can observe a different intensity distribution in healthy
samples from Liguria and Puglia. These features, in addition to being reliable infection
markers, can be used also as regionality markers, giving strength to this global metabolomic
approach itself. Oleuropein (FT1775) shows a similar abundance distribution in healthy
and desiccated classes except for some outliers which are, however, comparable with the
two classes; in the case of FT2149: rutin, there is an appreciable origin-related variability in
healthy samples (Figure 5).

4. Materials and Methods
4.1. Chemicals and Materials

Ammonium acetate, formic acid LC-MS grade, catechin, and galangine were pur-
chased from Sigma Aldrich (Milan, Italy). Acetonitrile and methanol solvents were pur-
chased from VWR Italia (Milan, Italy) and were used without any further purification
treatment. All the aqueous solutions were prepared by using ultrapure water (Merck
Millipore MilliQ ™, Darmstadt, Germany).

4.2. Sampling Protocol of Plant Samples

Plant extracts considered in our investigation belonged to four distinguished groups:
“Puglia infected”, “Liguria healthy”, “Puglia healthy”, and “Puglia desiccated”. It was
impossible to collect Liguria infected samples since, to date, there is no evidence of Xf
infection in any Italian region other than Puglia. Puglia infected samples were harvested
from plants infected by Xylella fastidiosa; their infection state was confirmed by an antibody
ELISA kit test. In total, 17 healthy samples (HP) comprehending 6 desiccated samples
(DHP) and 15 samples with OQDS symptoms (OP) were collected directly from olive
trees. The two groups of healthy samples were extracted from healthy olive trees grown
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in Pornassio (Liguria region, Italy) and Salento (Puglia region, Italy). Finally, desiccated
samples were collected from a desiccated branch of a healthy olive tree; Table 2 reports the
state, origin, and the number of samples.

Table 2. Distribution of samples, state, and origin.

Healthy Infected

Normal (HP) Desiccated (DHP) Desiccated (OP)
11 6 16

5 Puglia, 6 Liguria 6 Puglia 16 Puglia

This specific experimental design was decided to compare the effect of the infection
with potential confounding factors such as the farming locations (Puglia or Liguria regions,
Italy) or the sample dryness, since infected samples are in desiccated form.

4.3. Quality Controls Setting

Quality controls (QCs) are created to assess and ensure that the analytical method
created is performed appropriately and meets the criteria defined a priori. In our case, the
QC sample was a pooled sample in which a small aliquot (20 µL) of each extracted sample
under analysis was mixed in a 10-mL tube. By this way, the pooled QC created represents
the matrix as the metabolites’ composition of Xylella-infected samples.

Frequency of QC injections [39] was set according to earlier publications, focusing
particularly upon [40]. HP and OD samples were injected in randomized run order in
the same batch. QC injections were performed in each of the 5 samples. Additionally, at
the beginning of the analysis, 10 consecutive injections of QC samples were performed to
prime the column.

4.4. Sample Harvesting and Preparation

An amount of 600 g of leaves was harvested from each tree; 10 of them were sampled
and immediately shock-frozen with liquid nitrogen to block all metabolic processes and
transferred to the laboratory for the extraction.

It is fundamental to quench the metabolism as soon as possible, and shock freezing
using liquid nitrogen is the most common and efficient method to inactivate the metabolism
and preserve all the metabolites.

4.5. Extraction Protocol of Plant Samples and QCs Sample Generation

Leaves were flash frozen in liquid nitrogen and then manually grounded with a pestle
and a mortar (pre-cooled and filled with liquid nitrogen). An amount of 300 mg of fine
powder was extracted with 1.2 mL of 70% aqueous methanol in 1.5 mL Eppendorf tubes,
sonicated for 15 min, and centrifuged at 13,680× g for 20 min. An amount of 500 µL of the
supernatants was transferred in new Eppendorf tubes and the solvent evaporated under a
stream of nitrogen. The addition of 1 mL of water/acetonitrile 50:50 (v/v) to the dry extract
was followed by sonication (15 min) and centrifugation (13,680× g, 20 min).

Before conducting the analyses, each sample was spiked with two different internal
standards: catechin (289.0790 m/z negative ion mode), and galangine (269.0528 m/z neg-
ative ion mode). The use of two different internal standards (eluting by the analytical
column at different retention times) is a fundamental condition for having good results
during the data alignment process. All injections were performed in the same batch.

4.6. HPLC-ESI-LTQ Orbitrap Parameters

Analyses were performed on a HPLC-ESI HRMS. Instrument setup for all the analy-
ses consisted of a Dionex Ultimate 3000 HPLC system equipped with a solvent vacuum
degasser (Thermo Scientific, Milan, Italy) coupled with a high-resolution mass spectrom-
eter, LTQ-Orbitrap (Thermo Scientific, Milan, Italy), through an electrospray ionization
(ESI) interface.
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Chromatograms were recorded using Thermo Xcalibur 3.0 software (Rev. SP1 1160).
A Gemini NX-C18 column from Phenomenex (Gemini NX-C18, 2.0 × 150 mm, 3.0 µm,
110 Å, Phenomenex, Bologna, Italy) was used to obtain chromatographic separation of
the extracts. Mobile phase was ammonium acetate 0.005 M in ultrapure water (C) and
acetonitrile (B). Gradient elution was set as follows: linear gradient from 5 to 20% B in
8 min, then 20% B held for 4 min, linear gradient from 20 to 30% B from 12 to 20 min, then
in 2 min reaches 100% B; in 1 min the percentage of acetonitrile returns to initial conditions:
(5%) and it is held for 10 min (from 23 to 33 min) to ensure the correct equilibration of the
column at the initial condition percentages. The flow rate was set at 200 µL/min. Global
run time was 33 min. The column temperature was set at 25 ◦C. Sample injection volume
was 10 µL.

The HRMS system operated in the negative ionization mode. ESI tuning parameters
were set as follows: capillary voltage was −13 V (ESI-); tube lens was set at −36 V (ESI-);
source voltage was set to 3.5 kV (ESI-); sheath gas and aux gas flow rate were, respectively,
35 and 20 arbitrary units in both methods; spray current was set at 0.05 µA; capillary
temperature was 270 ◦C during all the analyses. The mass spectrometer operated in
full-scan mode in the range 100–1200 m/z (ESI-), with a resolution of 30,000 in FTMS
mode. Tandem mass (MS/MS) experiments were automatically performed in the range
100–1200 m/z (ESI-), using the automatic dependent scan function. Collision energy was
set at 30 (arbitrary units) for all the MS acquisitions. All spectra were acquired in centroid
mode. Xcalibur 3.0 software (Rev. SP1 1160, Thermo Scientific, Bremen, Germany) was
used both for acquisition and for elaboration and calculation.

4.7. Data Processing and Statistical Analysis

Raw LC-MS data files were converted into mzXML using the open source software
ProteoWizard—MSConvert [41].

Data pre-processing was performed with XCMS [42].
Parameters applied for the processing were set as follows: centWave for feature detec-

tion (peakwidth = c (20, 80), prefilter = c (3, 50000), ppm = 10); retention time correction
was performed with obiwarp (binSize = 0.6); peak matching across the samples (minFrac-
tion = 0.8, bw = 40). Before statistical analysis, missing peaks were imputed by applying
the FillMissingPeaks algorithm available in XCMS. Statistical analyses were performed in
R on the matrix constructed by extracting the maximum value of the intensity measured
on each feature chromatographic peak (maxo). Log transformation was used to correct for
the expected heteroskedasticity of metabolomics data.

Due to the strong differences in the samples belonging to the different classes, no
sample normalization was performed. To pinpoint the features showing the stronger
contrast, a two-stage strategy was applied:

1. Kruskall–Wallis test was applied to identify the features showing a significant differ-
ence between HP and OP samples (p < 0.01 after Bonferroni correction).

2. Significant features were then ranked on the bases of their median intensity in the
two sample classes.

3. The potential list of infection biomarkers was selected:

a- By considering the features present in the top quartile of the ranked list for OP
and in the lower quartile of the HP list.

b- By considering the features present in the top quartile of the ranked list for HP
and in the lower quartile of the OP list.

Tables S1 and S2 report the discriminating features found together with their averaged
m/z ratio and retention times.

4.8. Metabolites Identification

Identification of single metabolites was achieved by MS/MS spectrum matching with
available online databases such as MoNA and UNPD [43], and the MetFrag online tool [44].
When a tandem MS experiment was not present, we attempted molecular recognition by
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the accurate m/z signal which was converted to a putative molecular formula by means of
Xcalibur Qual browser 3.0 software (Rev. SP1 1160, Thermo Scientific, Bremen, Germany)
or the Metlin [45,46] online database. Proposed formulas were ranked for their ∆-ppm (0 to
6 ppm max); other applied constraints were the included atom elements: C: 0 to 50, O: 0 to
30, N: 0 to 10, H: 0 to 100, S: 0 to 5, P: 0 to 5; and RDB equivalent: −1 to 30 (for Xcalibur Qual
browser only). As already mentioned, all analytes detected by our untargeted approach
are classified as per MSI guidelines (Metabolomic Standard Initiative) [47].

5. Conclusions

An untargeted metabolomics approach was applied to olive leaves samples with the
aim to understand the main differences between healthy plants and plants with OQDS-like
symptoms. To this end, we followed an extraction procedure with aqueous methanol
and developed a simple, accurate, high-resolution mass-based analysis method that could
detect the broadest range of metabolites.

Results of multivariate analysis show a clustering of two pools of samples (HP vs.
OP) based on two principal components (PC1 and PC2). Notably, the addition of Ligurian
samples with different regionality factors and of desiccated samples proved the robustness
of the method which is still capable of clustering healthy and infected samples on the first
PCA axis. In addition, eighteen different organic compounds, among which 14 were highly
expressed in the OP group, were annotated.

These results should pave the way for a targeted and feasible analytical approach
aimed at the detection of early infection state-related molecules for all the research and
routine laboratories who cannot afford a global metabolomics instrumentation setup.
However, a truly comprehensive analysis of the plant metabolite pool is not easily feasible
due to the large number of primary and secondary metabolites in any given plant species.
Each analytical technology has advantages and limitations, and not one can cover the whole
metabolome due to the chemical diversity of metabolites and their broad dynamic range in
cellular abundance [48]. Consequently, different extraction techniques and combinations
of analytical methods should be employed in attempts to achieve adequate metabolite
coverage [49].

In future, the primary goal is to obtain a more significant number of features by
implementing diverse extraction methods and by merging results upcoming from MS
to other techniques more oriented to identification and characterization such as NMR
spectroscopy.

More in-depth and more accurate knowledge of the olive metabolome and its infection-
related differences can be provided by reiterating the analysis of different years to verify
whether the data obtained by analyzing samples belonging to a single vintage remain
unchanged or not by analyzing olive trees of different years.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-1
989/11/1/40/s1, Figure S1: Infected (OP), desiccated (DHP), and healthy (HP) samples’ total ion
current (TIC) chromatograms in the full acquisition time range, Table S1: All infected discriminating
features reported together with Rt (min), Table S2: All healthy-discriminating features reported
together with Rt (min).
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