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Abstract 

Background:  Despite the overall major impact of long-lasting insecticide treated nets (LLINs) in eliciting individual 
and collective protection to malaria infections, some sub-Saharan countries, including Burkina Faso, still carry a dispro-
portionately high share of the global malaria burden. This study aims to analyse the possible entomological bases of 
LLIN limited impact, focusing on a LLIN-protected village in the Plateau Central region of Burkina Faso.

Methods:  Human landing catches (HLCs) were carried out in 2015 for 12 nights both indoors and outdoors at dif-
ferent time windows during the highest biting activity phase for Anopheles gambiae (s.l.). Collected specimens were 
morphologically and molecularly identified and processed for Plasmodium detection and L1014F insecticide-resist-
ance allele genotyping.

Results:  Almost 2000 unfed An. gambiae (s.l.) (54% Anopheles coluzzii and 44% Anopheles arabiensis) females landing 
on human volunteers were collected, corresponding to a median number of 23.5 females/person/hour. No significant 
differences were observed in median numbers of mosquitoes collected indoors and outdoors, nor between sporozo-
ite rates in An. coluzzii (6.1%) and An. arabiensis (5.5%). The estimated median hourly entomological inoculation rate 
(EIR) on volunteers was 1.4 infective bites/person/hour. Results do not show evidence of the biting peak during night 
hours typical for An. gambiae (s.l.) in the absence of bednet protection. The frequency of the L1014F resistant allele 
(n = 285) was 66% in An. coluzzii and 38% in An. arabiensis.

Conclusions:  The observed biting rate and sporozoite rates are in line with the literature data available for An. gam-
biae (s.l.) in the same geographical area before LLIN implementation and highlight high levels of malaria transmission 
in the study village. Homogeneous biting rate throughout the night and lack of preference for indoor-biting activity, 
suggest the capacity of both An. coluzzii and An. arabiensis to adjust their host-seeking behaviour to bite humans 
despite bednet protection, accounting for the maintenance of high rates of mosquito infectivity and malaria transmis-
sion. These results, despite being limited to a local situation in Burkina Faso, represent a paradigmatic example of how 
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Background
Long-lasting insecticide treated nets (LLINs) are very 
effective in reducing malaria transmission by combining 
individual physical protection to people sleeping under 
the nets with collective protection provided by the insec-
ticidal activity of pyrethroids restrained in the net fibres 
[1]. Published data show that this community effect is 
reached when net usage in the population exceeds 50% 
[2, 3]. Since 2005, massive campaigns of three-year peri-
odical distributions of LLINs have been implemented in 
many malaria-endemic countries. In sub-Saharan African 
countries, about 254 million LLINs were supplied between 
2008–2010 and a further 806 million between 2011–2016 
[1, 4]. It has been estimated that 68% of the 663 million 
malaria cases prevented in the first 15 years of this century 
in Africa, are due to the usage of LLINs [5]. Despite this 
success, most of sub-Saharan Africa still carries a dispro-
portionately high share of the global malaria deaths [6–9] 
and the WHO has registered a stalling of the progress in 
the fighting against malaria since 2015. Particularly, the 
effectiveness of LLINs seems to be heterogeneous in some 
sub-Saharan hyper-endemic countries where the annual 
incidence is still very high [10].

Among many causal factors for this scenario (e.g. bed-
net quality and usage, ecological context), a crucial role 
is played by insecticide resistance, which undermines 
LLINs collective protective effect by reducing mosquito 
exposure to lethal dose of pyrethroids within the nets. 
Indeed, multiple mechanisms of resistance to pyrethroid 
insecticides have been observed in African Anopheles 
populations [11–13]: increased metabolic detoxification 
of insecticide molecules by enhanced enzyme activity 
(e.g. P450 monooxygenase) [13], mutations in insecticide 
target site (e.g. mutations in the para-type sodium chan-
nel gene, kdr mutations [14]) and/or mosquito behav-
ioural adaptations (e.g. increased exophily, opportunistic 
biting activity and/or shift in biting activity [15]). Moreo-
ver, according to Killeen et al. [16], vector species com-
position could be a limiting factor to reduce mosquito 
density to a level sufficient to obtain a relevant impact on 
malaria transmission through LLINs: massive abatement 
can be expected where major vector species feed mostly 
indoors on humans. On the other hand, where general-
istic/opportunistic species are dominant, LLINs need 
to be combined with other interventions to obtain an 
effect on vector population and subsequently on malaria 
transmission.

This might be the case for Burkina Faso where the 
increase in LLIN coverage, from 20% to 70% between 
2009–2014, did not significantly affect malaria annual 
incidence, with an increasing number of cases reported 
each year [5, 17–23]. In a previous study carried out in 
2011 in the village of Goden (Burkina Faso) one year after 
LLINs introduction, we observed an unexpected high 
sporozoite rate (SR) in the major malaria vectors in the 
area (i.e. 7.6% in Anopheles coluzzii and 5.3% in Anoph-
eles arabiensis) despite low human blood index (20.1% 
in An. coluzzii and 5.8% in An. arabiensis [24]). Similar 
infective rates were also confirmed in a subsequent ento-
mological survey conducted in the same village in 2012 
(SR = 6.6% in An. coluzzii [25]). These observations sug-
gest that, despite LLINs having significantly reduced 
human/vector contact in holo-endemic areas such as 
Burkina Faso, they have not apparently led to a substan-
tial reduction of mosquito infection rates.

Thanks to human landing catches carried out in the 
same village five years after mass LLIN introduction, 
we here provide evidence on how high densities and 
behavioural plasticity of An. coluzzii and An. arabiensis, 
in association with insecticide resistance mechanisms, 
undermine the community protective effect of LLIN and 
reduce the impact of LLINs on malaria transmission in 
the Ziniaré district of Burkina Faso.

Methods
Sampling area
Field collections were carried out in November 2015 (i.e. 
at the end of rainy season, just after the peak of malaria 
transmission) in a holo-endemic [26] Sudanese-savannah 
village in the Plateau Central region (12° 25′ N, 1° 21′ W; 
Zinaré health district), 41 km East of Ouagadougou, the 
capital city of Burkina Faso. The sampling occurred in 
Goden, a rural village with approximately 800 inhabit-
ants mainly belonging to the Mossi ethnic group, mostly 
devoted to agriculture, and rearing a few animals and 
occasional settlements of Fulani ethnic group devoted 
to cattle. From 2010 LLINs were widely distributed in 
the Plateau Central region. Although specific data on the 
actual LLIN coverage, quality and usage in the study site 
are not available, more than 9 million LLIN have been 
distributed in the whole country during 2013 campaign 
[27], with 64% of population coverage estimated in the 
Plateau Central region [28], a level above the threshold 
needed to elicit a community protective effect [2, 3].

high densities and behavioural plasticity in the vector populations may contribute to explaining the limited impact of 
LLINs on malaria transmission in holo-endemic Sudanese savannah areas in West Africa.
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Entomological collections and molecular analysis
Host-seeking mosquitoes were collected by human land-
ing catch (HLC) in two houses, both indoors and out-
doors, at three different time windows (21:00–22:00 h; 
00:00–01:00 h; 03:00–04:00 h) for a total of 12 nights. 
This interval corresponds to the highest biting activity 
phase reported for An. gambiae (s.l.) [29]. During the 
sampling period, no other human host was present in 
the houses with the exception of the volunteer who per-
formed the collection and no LLINs or IRS were used.

All mosquitoes were morphologically identified under 
stereomicroscope [30], separated by species and sex. 
Heads and thoraces of An. gambiae (s.l.) females were 
dissected from abdomens and stored individually in 
tubes containing desiccant. DNA was extracted from 
heads and thoraces according to DNAZOL protocol 
(Molecular Research Center, Cincinnati, Ohio) [31]. Spe-
cies were molecularly identified by SINE-PCR [32]. DNA 
from heads and thoraces was used as templates for Plas-
modium sporozoite DNA detection by real-time PCR 
[33]. Subsamples of An. arabiensis and An. coluzzii were 
further processed by real-time PCR for genotyping L1014 
(kdr-w), the most ancient and common insecticide-resist-
ance associated allele in the sodium-gated voltage-chan-
nel gene [14, 34, 35].

Statistical analysis
Differences in biting activity indoors vs outdoors and 
among different time windows of HLC collections were 
analysed by Mann-Whitney and Kruskal-Wallis tests 
(after assessment of non-normal distribution of data 
by Shapiro-Wilk test) for An. gambiae (s.l.), as well as 
for single species of the complex. Chi-square test was 
employed to investigate possible differences in sporozo-
ite rate among species and between positions of sampling 
within each species. Chi-square test was also applied to 
assess prospective diversities in insecticide resistance 
level between species, between indoor vs outdoor collec-
tions within each species and between different infectiv-
ity states.

Generalized linear mixed effect models (GLMM) 
were built to verify variation in the abundance of vec-
tor species (Anopheles gambiae (s.l.), An. arabiensis, An. 
coluzzii) between trapping positions (indoors, outdoors), 
between houses (A and B) and among different HLC time 
windows (21:00–22:00 h; 00:00–01:00 h; 03:00–04:00 
h). As the response variable of mosquito abundances is 
highly over-dispersed, a negative binomial distribution 
was chosen. For each species, two models were built, 
both including time windows, trapping locations and 
houses as covariates and the sampling days as a random 
effect. The two models differed in: (i) no interaction 
among variables; and (ii) interaction between trapping 

location and house. The best model was chosen by the 
Akaike information criterion (AIC) and likelihood ratio 
test. The tests were conducted using the R statistical soft-
ware version 3.5.0 [36] with lme4 package [37].

Overall hourly entomological inoculation rate (EIR) 
was calculated multiplying the median number of human 
biting mosquitoes in an hour (obtained by HLC data) 
with the estimated sporozoite rate.

Results
During the 12 nights of sampling, 1996 unfed mosquito 
females were collected landing on human volunteers, 
corresponding to a median number of 23.5 females/
hour/person. All of them were morphologically identified 
as An. gambiae (s.l.), of which 53.9% were An. coluzzii, 
43.5% An. arabiensis and 0.5% An. gambiae (s.s). One 
An. coluzzii/An. gambiae (s.s) hybrid was found and 42 
specimens (2.1%) were not successfully identified by PCR 
(Table 1).

No significant differences were observed in median 
numbers of mosquitoes collected indoors and outdoors 
(Mann-Whitney test: An. arabiensis, U = 0.51, P = 0.90; 
An. coluzzii, U = 0.52, P = 0.77; An. gambiae complex, 
U = 0.52, P = 0.74; Fig.  1). GLMM results indicated a 
higher abundance of An. arabiensis and An. coluzzii out-
doors in one of the two houses sampled (see Additional 
file 1: Table S2). No significant differences were observed 
in median numbers of females collected during the three 
HLC-time windows (Kruskal-Wallis test; GLMM results: 
An. arabiensis, T = 1.16, P = 0.56; An. coluzzii, T = 2.84, 
P = 0.24; An. gambiae complex, T = 0.83, P = 0.66; Addi-
tional file 1: Table S2).

Overall, a 5.8% sporozoite rate (SR) was estimated: 114 
An. gambiae (s.l.) females were found positive for P. fal-
ciparum, 1 for Plasmodium sp. (either P. vivax, P. ovale 
or P. malariae), and 1 for mixed infection (i.e. presence 
of both P. falciparum and P. vivax/P. ovale/P. malariae). 
No significant differences in SR were detected between 
An. coluzzii (6.1%) and An. arabiensis (5.5%) (χ2 = 0.2, 
P = 0.7), nor between samples collected indoors and 
outdoors (An. arabiensis: 6.6% indoors, 4.9% outdoors, 
χ2 = 1.5, P = 0.22; An. coluzzii 6.9% indoors, 5.2% out-
doors, χ2 = 1.1, P = 0.24). The estimated median hourly 
entomological inoculation rate (EIR) was 1.4 infective 
bites/hour per human volunteer, corresponding to a 
cumulative EIR of 9.8 infective bites during the 7-hour 
sampling interval.

The observed frequency of kdr-w resistant allele was 
66% in An. coluzzii (n = 163) and 38% in An. arabien-
sis (n = 122). The frequency of the homozygous resist-
ant genotype was significantly higher in An. coluzzii 
(χ2 = 59.4, P < 0.0001) (Table 2). No differences in resist-
ance genotypes were detected in indoors vs outdoors 
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collected samples (An. coluzzii, χ2 = 0.3, P = 0.65; An. ara-
biensis, χ2 = 1.4, P = 0.49), nor in infective (n = 100) vs not 
infective (n = 188) specimens (χ2 = 2.3, P = 0.32). This, in 
agreement with Traoré et  al. [38] and Doumbe-Belisse 
et al. [39], does not confirm previous reports of higher P. 
falciparum infective status/susceptibility in kdr-resistant 
mosquitoes [40–42].

Discussion
Our results show that at the end of rainy season, inhab-
itants of Goden are potentially exposed to at least ten 
infective bites/person/night, despite five years since the 
beginning of LLIN mass distribution campaign in Pla-
teau Central region of Burkina Faso [28]. Indeed, the 
fraction of bednet-protected people (about two-thirds 
of the whole population [28]) are likely exposed to mos-
quito-bites in early evening and early morning, when not 
sleeping under the LLIN and receive much less infective 
bites than estimated in the present study. However, the 
high biting rates observed between 21:00 and 22:00 h 
(when most people are inside houses and possibly not yet 
protected by LLINs; CNRFP, unpublished data) suggest 
actual high levels of exposure of the Goden population. 
This levels of exposures are unusually high compared to 
EIRs reported (per night) before LLIN distribution in the 
same village (mean 7.4, min 2.5, max 17.0 [43]), as well 
as in the Plateau Central region of Burkina Faso (mean 
2.3, min 0.2, max 8.3 [44, 45]), as well as those reported in 
other regions of Burkina Faso (2.4 [46]) and in other sub-
Saharan African countries where LLINs are in use (rang-
ing from 0.04 to 3.4 [47–63]).

The estimated EIR value is due to both high malaria 
vector densities (HBR = 23.5 females/hour/person) and 
very high levels of infectivity in the vector population 
(SR = 5.8%). Both biting rate and infectivity rate are in line 
with the few literature data available for An. gambiae (s.l.) 
in Goden (1.8 < SR < 12.1 [43]) and in the same geographi-
cal area before LLIN implementation (0.5 < HBR < 26.3 
[64, 65]; 3 < SR < 10 [64–66] in 6 villages in a radius of 40 
km from Ouagadougou) and comparable to SR in Goden 

in 2011 (6.9% [24]) and 2012 (6.6% [25]). Notably, even 
though SRs were assessed by different approaches in dif-
ferent studies, results by recently developed rDNA-based 
TaqMan assays [33, 67] do not significantly differ to those 
obtained by traditionally used CSP-ELISA [67].

Data also shed some light on other entomological fac-
tors, which could have reduced LLIN-effectiveness after 
5-year implementation (i.e. endophagy vs exophagy, time 
of biting and genetic resistance to insecticides) in the two 

Table 1  Percentage of mosquito abundance divided per species, time window and position of collection (indoors and outdoors)

Species Indoors Outdoors Total (n)

21:00–22:00 h 00:00–01:00 h 03:00–04:00 h Total 21:00–22:00 h 00:00–01:00 h 03:00–04:00 h Total

An. arabiensis 24 41 35 422 35 36 30 446 868

An. coluzzii 34 39 27 519 46 26 28 556 1075

An. gambiae 100 0 0 5 0 40 60 5 10

An. coluzzii/An. gambiae 0 100 0 1 0 0 0 0 1

Unidentified 37 37 26 19 57 26 17 23 42

Total (n) 289 385 292 966 426 309 295 1030 1996

Min < LQ < Median > UQ > Max
Fences (1.5 & 3.0 IQR)

0 20    40 60  80 100

0 20    40 60  80 100

An. arabiensis
indoors

An. arabiensis
outdoors

An. coluzzii
indoors

An. coluzzi
outdoors

a

b

No. of 
mosquitoes

No. of 
mosquitoes

Fig. 1  Box-and-Whisker plots of host-seeking females/hour/person 
(x-axis) collected indoors and outdoors. a Anopheles arabiensis. b 
Anopheles coluzzii. Abbreviations: min, minimum value; lq, lower 
quartile; uq, upper quartile; max, maximum value
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main malaria vector species in the village, i.e. An. coluzzii 
and An. arabiensis.

First, our results do not suggest endophagic prefer-
ences in either vector species, in agreement with what 
observed in An. coluzzii in other settings characterized 
by massive LLIN coverage (North-West Burkina Faso 
[46], Benin [68] and Bioko Island [69]). Although most 
studies focusing on resting mosquitoes indirectly sug-
gest high endophagy for An. coluzzii/An. gambiae, the 
few studies carried out by HLC both indoors and out-
doors show lack of preference for the biting location 
even before LLIN implementation [70–77]. Overall, this 
highlights that anthropophily is the main driver of the 
endophagic behaviour in An. coluzzii/An. gambiae. Con-
sequently, the supposed higher exophagy of An. arabien-
sis is a consequence of its generalistic host preference [78, 
79]. Thus, in cases of reduced human-host availability 
indoors due to LLIN, both An. coluzzii and An. arabiensis 
do not require a secondary adaptation to bite outdoors, 
as they are already adapted to do it. Notably, mathemati-
cal models suggest that even relatively modest changes 
in outdoor biting can have a substantial public health 
impact (e.g. a 10% increased outdoor biting activity could 
result in 10.6 million additional malaria cases in whole 
Africa, even assuming a 100% LLINs coverage) [29].

Secondly, no differences in biting rates were observed 
between 21:00 and 4:00 h in vector species. Indeed, a 
peak of activity during night hours is typical for An. 
gambiae (s.l.) in the absence of bednet protection [71, 
72, 74, 75, 80–85]. To our knowledge, a lack of peak of 
activity was observed in An. coluzzii only in Burkina Faso 
[46] and in Bioko Island [69] where, two years after the 
introduction of LLINs, the proportion of host-seeking 
events changed towards a lack of significant differences 
throughout the night. On the other hand, a wide range of 
peak biting times (i.e. early, late or “central” night activ-
ity) has been reported in An. arabiensis after control 
interventions [52, 86–89]. According to theoretical pre-
dictions, lack of biting time peak is indicative of a situa-
tion in which the selective pressure exerted by LLIN has 
altered the typical biting pattern, but has not been yet 
sufficient to trigger a strong shift towards earlier and later 
biting times (Fig. 2; [90]) Expanding the duration of HLC 

before dusk and after dawn would allow to analyse more 
in detail a possible peak of biting activities to earliest and 
latest hours to access hosts unprotected by LLINs, as 
reported by Russell et  al. [91]. In particular, measuring 
the numbers of host-seeking mosquitoes at times when 
people are still engaged in working activities outdoors 
would give a better estimate of actual risk of malaria 
transmission in the area.

Thirdly, while we did not carry out insecticide resist-
ance bioassays, we genotyped a subsample of collected 
specimens for the locus L1014 of the sodium-gated 
voltage-channel gene, known to be one of the markers 
associated to pyrethroid resistance, to speculate on the 
possible role of insecticide resistance in contributing to 
high levels of transmission in the village by increasing 
survival of endophagic vectors entering in contact with 
the bednet. We found frequencies of the L1014F allele of 
67% and 38% in An. coluzzii and An. arabiensis, respec-
tively (without significant differences between indoor 
and outdoor collections), suggesting that pyrethroids are 
selecting target site resistance in the study site. Notably, 
the deterrent effect of LLINs on partially resistant (either 
behaviourally or genetically) mosquitoes is known to 
diverge biting activity to unprotected hosts both indoors 
and outdoors [92–95].

Effectiveness of ITN/LLINs relies on anthropophilic 
and therefore endophagic behaviour of vector popula-
tions and susceptibility to insecticides used to impreg-
nate the bednets. A limited number of studies showed 
that changes in vector biting behaviour, as well as shift in 
species dominance, following LLIN implementation can 
undermine the efficacy of such control measures (Addi-
tional file  1: Table  S3). A species shift was repeatedly 
shown in East Africa where, after LLIN introduction, the 
former most abundant highly anthropophilic vector, An. 
gambiae, has been outnumbered by the more generalist 
An. arabiensis, leading to an overall decrease in sporo-
zoite rates [51–53, 88, 96–100]. To our knowledge, shifts 
in vector dominance after LLIN introduction has never 
been investigated in West and Central Africa (where 
An. coluzzii is also present), with the exception of Bioko 
Island, where a progressive replacement of An. gambiae 
by An. coluzzii was observed as indoor control measures 
were applied [69]. Our results do not show a shift in spe-
cies composition following 5-year LLIN implementation 
in the study area in Burkina Faso where, even before bed-
net introduction, An. coluzzii and An. arabiensis were the 
main circulating vectors and An. gambiae was uncom-
mon [101]. Nevertheless, our results suggest that LLINs 
have elicited a “behavioural resilience” (sensu Govella 
et al. [102]) in An. coluzzii, leading to the biting rhythms 
observed in the present study [72, 75, 84], as well as to 
a higher zoophagy, as detected in 2011 [24]. Indeed, An. 

Table 2  Homozygote resistant (+/+), heterozygote (+/−), 
sensitive wild type (−/−) genotype frequencies (in %) of the 
L1014F mutation in subsampled An. arabiensis and An. coluzzii 

Species +/+ +/− −/− Total (n)

An. arabiensis 27.1 21.3 51.6 122

An. coluzzii 43.5 46.1 10.4 163

Total (n) 36.5 35.4 31.1 285
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coluzzii is known to be characterized by high ecological 
plasticity in the exploitation of different habitats [103–
109], as well as by an opportunistic host-seeking behav-
iour [16, 69, 110]. Overall, the ecological plasticity of the 

two main vectors maximises their capacity to reach the 
human host when not protected by bednets, consistent 
with the high biting and sporozoite rates observed in the 
study site.

Conclusions
Our results, despite being limited to a local situation in 
Burkina Faso, represent a paradigmatic example of how 
behavioural plasticity in the vector population may con-
tribute to explain the limited impact of LLINs on malaria 
transmission in malaria holo-endemic Sudanese savan-
nah areas in West Africa. Data suggest that the capacity 
of the two main vectors in the study site (An. coluzzii and 
An. arabiensis) to adjust their host-seeking behaviour 
to bite humans despite bednet protection, coupled with 
high densities and insecticide resistance, can undermine 
LLIN community protective effect, allowing the mainte-
nance of high rates of mosquito infectivity and malaria 
transmission. The behavioural plasticity of An. coluzzii 
here highlighted suggests that this species is capable to 
react to indoor control interventions as shown in the 
case of An. arabiensis in East Africa. This should not 
be neglected when modelling the efficacy or planning 
malaria control measures at the local/regional level.
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mosquitoes for different proportion of inhabitants using bednets: 
absence of coverage (a); intermediate coverage (b); full coverage (c). 
In b the model curve is overlapped with the human biting activity 
observed in sampling time windows in Goden, Burkina Faso (21:00–
22:00 h; 00:00–01:00 h; 03:00–04:00 h). Differently from the theoretical 
model proposed by Ferreira et al. [90], in this study the curve of the 
biting activity is shrinked to three time windows, from which 100% of 
mosquitoes are counted. This results in a higher relative proportion 
of mosquitoes in this time window compared to the model curve 
(x-axis, hours; y-axis, percentage of biting mosquitoes). Modified 
from Ferreira et al. (2017) Modelling the impact of the long-term use 
of insecticide-treated bed nets on Anopheles mosquito biting time. 
Malar J. 16:373 [90] (Creative commons license http://creat​iveco​
mmons​.org/licen​ses/by/4.0)
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